HEAL DSpace

He in dichromatic weak or strong ac fields of λ1 = 248 nm and λ2 = (1/m) 248 nm (m = 2,3,4)

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mercouris, T en
dc.contributor.author Nicolaides, CA en
dc.date.accessioned 2014-03-01T01:16:36Z
dc.date.available 2014-03-01T01:16:36Z
dc.date.issued 2001 en
dc.identifier.issn 10502947 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14117
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Electric field effects en
dc.subject.other Electronic structure en
dc.subject.other Heuristic methods en
dc.subject.other Irradiation en
dc.subject.other Photoionization en
dc.subject.other Photons en
dc.subject.other Spectrum analysis en
dc.subject.other Dichromatic fields en
dc.subject.other Multiphoton ionization en
dc.subject.other Helium en
dc.title He in dichromatic weak or strong ac fields of λ1 = 248 nm and λ2 = (1/m) 248 nm (m = 2,3,4) en
heal.type journalArticle en
heal.identifier.primary 10.1103/PhysRevA.63.013411 en
heal.identifier.secondary http://dx.doi.org/10.1103/PhysRevA.63.013411 en
heal.publicationDate 2001 en
heal.abstract We have computed multiphoton ionization rates for He irradiated by a dichromatic ac field consisting of the fundamental wavelength λ = 248 nm and its second-, third-, and fourth-higher harmonics. The intensities are in the range 1.0 × 1012 - 3.5 × 1014 W/cm2, with the intensity of the harmonics being 1-2 orders of magnitude smaller. The calculations incorporated systematically electronic structure and electron correlation effects in the discrete and in the continuous spectrum, for1S,1P,1D,1F,1G, and1H two-electron states of even and odd parity. They were done by implementing a time-independent, nonperturbative many-electron, many-photon theory which obtains cycle-averaged complex eigenvalues, whose real part gives the field-induced energy shift, Δ(ω1,F1;ω2,F2,φ2), and the imaginary part is the multiphoton ionization rate, Γ(ω1,F1;ω2,F2,φ2), where ω is the frequency, F is the field strength, and φ2 is the phase difference. Through analysis and computation we show that, provided the intensities are weak, the dependence of Γ(ω1,F1;ω2,F2,φ2) on φ2 is simple. Specifically, for odd higher harmonics, Γ varies linearly with cos(φ2) whilst for even higher harmonics it varies linearly with cos(2φ2). These relations may turn out to be applicable to other atomic systems as well, and to provide a definition of the weak-field regime in the dichromatic case. When the combination of (ω1,F1) and (ω2,F2) is such that higher powers of cos(φ2) and cos(2φ2) become important, these rules break down and we reach the strong-field regime. ©2000 The American Physical Society. en
heal.publisher American Inst of Physics, Woodbury, NY, United States en
heal.journalName Physical Review A - Atomic, Molecular, and Optical Physics en
dc.identifier.doi 10.1103/PhysRevA.63.013411 en
dc.identifier.volume 63 en
dc.identifier.issue 1 en
dc.identifier.spage 013411 en
dc.identifier.epage 013411 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής