HEAL DSpace

He in two-color AC-fields of λ1 = 248 nm and λ2 = (1/m) 248 nm, m = 2,3,4. The rate of multiphoton ionization, for weak fields, is a simple function of the phase

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mercouris, T en
dc.contributor.author Nicolaides, CA en
dc.date.accessioned 2014-03-01T01:16:37Z
dc.date.available 2014-03-01T01:16:37Z
dc.date.issued 2001 en
dc.identifier.issn 09214526 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14118
dc.subject Multiphoton ionization en
dc.subject Coherent control of ionization en
dc.subject.other Computational methods en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Electron transitions en
dc.subject.other Electronic structure en
dc.subject.other Harmonic generation en
dc.subject.other Helium en
dc.subject.other Optical correlation en
dc.subject.other Photons en
dc.subject.other Electron correlation effects en
dc.subject.other Multiphoton ionization en
dc.subject.other Ionization of gases en
dc.title He in two-color AC-fields of λ1 = 248 nm and λ2 = (1/m) 248 nm, m = 2,3,4. The rate of multiphoton ionization, for weak fields, is a simple function of the phase en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0921-4526(00)00809-7 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0921-4526(00)00809-7 en
heal.publicationDate 2001 en
heal.abstract Multiphoton ionization rates for He irradiated by a dichromatic AC-field consisting of the fundamental wavelength λ = 248 nm and its second, third and fourth higher harmonics have been computed. The calculations incorporated systematically electronic structure and electron correlation effects in the discrete and in the continuous spectrum. They were done by implementing a time-independent, nonperturbative many-electron, many-photon theory (MEMPT) which obtains cycle-averaged complex eigenvalues, whose imaginary part is the multiphoton ionization rate, Γ. It is shown that, provided the intensities are weak, the dependence of Γ on phase difference φ2, is simple. Specifically, for odd higher harmonics, Γ varies linearly with cos(φ2) whilst for even higher harmonics it varies linearly with cos(2φ2). These relations may turn out to be applicable to other atomic systems as well, and provide a definition of the weak-field regime in the dichromatic case. When the intensities are such that higher powers of cos(φ2) and cos(2φ2) become important, these rules break down and we reach the strong-field regime. © 2001 Elsevier Science B.V. en
heal.journalName Physica B: Condensed Matter en
dc.identifier.doi 10.1016/S0921-4526(00)00809-7 en
dc.identifier.volume 296 en
dc.identifier.issue 1-3 en
dc.identifier.spage 271 en
dc.identifier.epage 274 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής