dc.contributor.author |
Boulougouris, GC |
en |
dc.contributor.author |
Voutsas, EC |
en |
dc.contributor.author |
Economou, IG |
en |
dc.contributor.author |
Theodorou, DN |
en |
dc.contributor.author |
Tassios, DP |
en |
dc.date.accessioned |
2014-03-01T01:16:37Z |
|
dc.date.available |
2014-03-01T01:16:37Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
1089-5647 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14121 |
|
dc.subject |
Chemical Potential |
en |
dc.subject |
Equation of State |
en |
dc.subject |
Experimental Data |
en |
dc.subject |
Free Energy |
en |
dc.subject |
Hydrogen Bond |
en |
dc.subject |
Intermolecular Interaction |
en |
dc.subject |
Low Temperature |
en |
dc.subject |
Methane |
en |
dc.subject |
Molecular Simulation |
en |
dc.subject |
Monte Carlo Simulation |
en |
dc.subject |
Nitrogen |
en |
dc.subject |
Organic Solvent |
en |
dc.subject |
Thermodynamic Properties |
en |
dc.subject |
Thermodynamics |
en |
dc.subject |
Three-dimensional Structure |
en |
dc.subject.classification |
Chemistry, Physical |
en |
dc.subject.other |
Nonpolar solvents |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Equations of state of liquids |
en |
dc.subject.other |
Ethane |
en |
dc.subject.other |
Free energy |
en |
dc.subject.other |
Hydrophobicity |
en |
dc.subject.other |
Molecular dynamics |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Organic solvents |
en |
dc.subject.other |
Thermal effects |
en |
dc.subject.other |
Water |
en |
dc.subject.other |
Methane |
en |
dc.title |
Henry's constant analysis for water and nonpolar solvents from experimental data, macroscopic models, and molecular simulation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1021/jp010426f |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1021/jp010426f |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
Experimental data, equations of state (EoS), and Monte Carlo simulations are used to analyze the Henry's law constant of solutes in water and in organic solvents at different temperatures. EoS are incapable of correlating the experimental data for light hydrocarbons dissolved in water. Novel simulation methodologies are used for methane in water and in ethane. Results are analyzed with respect to the free energy of cavity formation for hosting the solute molecule in the solvent and the free energy of interactions between the solute molecule and the solvent. It is shown that the hydrophobic phenomenon is driven, to a large extent, by the weak intermolecular interactions between water molecules and nonpolar solute molecules. |
en |
heal.publisher |
AMER CHEMICAL SOC |
en |
heal.journalName |
Journal of Physical Chemistry B |
en |
dc.identifier.doi |
10.1021/jp010426f |
en |
dc.identifier.isi |
ISI:000170494000026 |
en |
dc.identifier.volume |
105 |
en |
dc.identifier.issue |
32 |
en |
dc.identifier.spage |
7792 |
en |
dc.identifier.epage |
7798 |
en |