dc.contributor.author |
Papadrakakis, M |
en |
dc.contributor.author |
Lagaros, ND |
en |
dc.contributor.author |
Tsompanakis, Y |
en |
dc.contributor.author |
Plevris, V |
en |
dc.date.accessioned |
2014-03-01T01:16:40Z |
|
dc.date.available |
2014-03-01T01:16:40Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
1134-3060 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14161 |
|
dc.subject |
Computational Method |
en |
dc.subject |
Domain Decomposition |
en |
dc.subject |
Dynamic Analysis |
en |
dc.subject |
Evolution Strategy |
en |
dc.subject |
Evolutionary Algorithm |
en |
dc.subject |
Genetic Algorithm |
en |
dc.subject |
Large Scale |
en |
dc.subject |
Large Scale Optimization |
en |
dc.subject |
Large Scale Structure |
en |
dc.subject |
Mathematical Programming |
en |
dc.subject |
Optimal Algorithm |
en |
dc.subject |
Optimal Design |
en |
dc.subject |
Optimal Method |
en |
dc.subject |
Optimum Design |
en |
dc.subject |
Sensitivity Analysis |
en |
dc.subject |
Spectrum |
en |
dc.subject |
Structure Analysis |
en |
dc.subject |
Structure Optimization |
en |
dc.subject |
Neural Network |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
NEURAL NETWORKS |
en |
dc.subject.other |
EVOLUTION STRATEGIES |
en |
dc.subject.other |
OPTIMAL-DESIGN |
en |
dc.subject.other |
IMPLEMENTATION |
en |
dc.subject.other |
DYNAMICS |
en |
dc.title |
Large Scale Structural Optimization: Computational Methods and Optimization Algorithms |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02736645 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02736645 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
The objective of this paper is to investigate the efficiency of various optimization methods based on mathematical programming and evolutionary algorithms for solving structural optimization problems under static and seismic loading conditions. Particular emphasis is given on modified versions of the basic evolutionary algorithms aiming at improving the performance of the optimization procedure. Modified versions of both genetic algorithms and evolution strategies combined with mathematical programming methods to form hybrid methodologies are also tested and compared and proved particularly promising. Furthermore, the structural analysis phase is replaced by a neural network prediction for the computation of the necessary data required by the evolutionary algorithms. Advanced domain decomposition techniques particularly tailored for parallel solution of large-scale sensitivity analysis problems are also implemented. The efficiency of a rigorous approach for treating seismic loading is investigated and compared with a simplified dynamic analysis adopted by seismic codes in the framework of finding the optimum design of structures with minimum weight. In this context a number of accelerograms are produced from the elastic design response spectrum of the region. These accelerograms constitute the multiple loading conditions under which the structures are optimally designed. The numerical tests presented demonstrate the computational advantages of the discussed methods, which become more pronounced in large-scale optimization problems. |
en |
heal.publisher |
INT CENTER NUMERICAL METHODS ENGINEERING (CIMNE) |
en |
heal.journalName |
Archives of Computational Methods in Engineering |
en |
dc.identifier.doi |
10.1007/BF02736645 |
en |
dc.identifier.isi |
ISI:000172623100001 |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
239 |
en |
dc.identifier.epage |
301 |
en |