HEAL DSpace

Large Scale Structural Optimization: Computational Methods and Optimization Algorithms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadrakakis, M en
dc.contributor.author Lagaros, ND en
dc.contributor.author Tsompanakis, Y en
dc.contributor.author Plevris, V en
dc.date.accessioned 2014-03-01T01:16:40Z
dc.date.available 2014-03-01T01:16:40Z
dc.date.issued 2001 en
dc.identifier.issn 1134-3060 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14161
dc.subject Computational Method en
dc.subject Domain Decomposition en
dc.subject Dynamic Analysis en
dc.subject Evolution Strategy en
dc.subject Evolutionary Algorithm en
dc.subject Genetic Algorithm en
dc.subject Large Scale en
dc.subject Large Scale Optimization en
dc.subject Large Scale Structure en
dc.subject Mathematical Programming en
dc.subject Optimal Algorithm en
dc.subject Optimal Design en
dc.subject Optimal Method en
dc.subject Optimum Design en
dc.subject Sensitivity Analysis en
dc.subject Spectrum en
dc.subject Structure Analysis en
dc.subject Structure Optimization en
dc.subject Neural Network en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other NEURAL NETWORKS en
dc.subject.other EVOLUTION STRATEGIES en
dc.subject.other OPTIMAL-DESIGN en
dc.subject.other IMPLEMENTATION en
dc.subject.other DYNAMICS en
dc.title Large Scale Structural Optimization: Computational Methods and Optimization Algorithms en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF02736645 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF02736645 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract The objective of this paper is to investigate the efficiency of various optimization methods based on mathematical programming and evolutionary algorithms for solving structural optimization problems under static and seismic loading conditions. Particular emphasis is given on modified versions of the basic evolutionary algorithms aiming at improving the performance of the optimization procedure. Modified versions of both genetic algorithms and evolution strategies combined with mathematical programming methods to form hybrid methodologies are also tested and compared and proved particularly promising. Furthermore, the structural analysis phase is replaced by a neural network prediction for the computation of the necessary data required by the evolutionary algorithms. Advanced domain decomposition techniques particularly tailored for parallel solution of large-scale sensitivity analysis problems are also implemented. The efficiency of a rigorous approach for treating seismic loading is investigated and compared with a simplified dynamic analysis adopted by seismic codes in the framework of finding the optimum design of structures with minimum weight. In this context a number of accelerograms are produced from the elastic design response spectrum of the region. These accelerograms constitute the multiple loading conditions under which the structures are optimally designed. The numerical tests presented demonstrate the computational advantages of the discussed methods, which become more pronounced in large-scale optimization problems. en
heal.publisher INT CENTER NUMERICAL METHODS ENGINEERING (CIMNE) en
heal.journalName Archives of Computational Methods in Engineering en
dc.identifier.doi 10.1007/BF02736645 en
dc.identifier.isi ISI:000172623100001 en
dc.identifier.volume 8 en
dc.identifier.issue 3 en
dc.identifier.spage 239 en
dc.identifier.epage 301 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής