dc.contributor.author |
Bliman, P-A |
en |
dc.date.accessioned |
2014-03-01T01:16:40Z |
|
dc.date.available |
2014-03-01T01:16:40Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0167-6911 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14166 |
|
dc.subject |
Delay-independent stability |
en |
dc.subject |
Linear delay systems |
en |
dc.subject |
Linear matrix inequalities |
en |
dc.subject |
Quadratic Lyapunov-Krasovskii functionals |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
Asymptotic stability |
en |
dc.subject.other |
Lyapunov methods |
en |
dc.subject.other |
Linear message centers |
en |
dc.subject.other |
Linear control systems |
en |
dc.title |
LMI characterization of the strong delay-independent stability of linear delay systems via quadratic Lyapunov-Krasovskii functionals |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0167-6911(01)00108-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0167-6911(01)00108-6 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
In this note is proposed an analogue for linear delay systems of the characterization of asymptotic stability of the rational systems by the solvability of associated Lyapunov equation, It is shown that strong delay-independent stability of delay system is equivalent to the feasibility of certain linear matrix inequality (LMI), related to quadratic Lyapunov-Krasovskii functionals. (C) 2001 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Systems and Control Letters |
en |
dc.identifier.doi |
10.1016/S0167-6911(01)00108-6 |
en |
dc.identifier.isi |
ISI:000169909600003 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
263 |
en |
dc.identifier.epage |
274 |
en |