HEAL DSpace

Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Giannakoglou, KC en
dc.contributor.author Giotis, AP en
dc.contributor.author Karakasis, MK en
dc.date.accessioned 2014-03-01T01:16:41Z
dc.date.available 2014-03-01T01:16:41Z
dc.date.issued 2001 en
dc.identifier.issn 1068-2767 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14170
dc.subject Artificial neural networks en
dc.subject Genetic algorithms en
dc.subject Optimization en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Applied en
dc.title Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters en
heal.type journalArticle en
heal.identifier.primary 10.1080/174159701088027771 en
heal.identifier.secondary http://dx.doi.org/10.1080/174159701088027771 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract A new method, which is capable of reducing the number of evaluations required by conventional Genetic Algorithms in order to reach the optimum solution, is described. For this purpose, an inexact, low-cost, pre-evaluation phase is introduced. In the proposed method, the inexact pre-evaluation aims at distinguishing the most promising among the population members in each generation, which will only be re-evaluated through the exact, and thus costly, tool. To effect this low-cost screening, artificial neural networks are employed which, in the case of inverse design or optimization of aerodynamic shapes, serve as Computational Fluid Dynamics substitutes. Here, Radial Basis Function networks are used, after being trained on a number of input-output pairs; inputs stand for shapes, i.e., candidate solutions to the problem, whereas outputs are their payoff values. Additionally, this paper introduces the concept of locally trained networks and the autocatalytic use of new sensitivity measures, the so-called importance factors. During the networks' training, the role of importance factors is to distinguish and give priority to the most important among the design parameters. Using several test problems, it will be demonstrated that the genetic optimization enhanced through the proposed inexact pre-evaluation, which is based on neural networks trained using dynamically computed importance factors, reduces the number of exact evaluations by approximately one order of magnitude, compared to its conventional counterpart. en
heal.publisher GORDON BREACH PUBLISHING, TAYLOR & FRANCIS GROUP en
heal.journalName Inverse Problems in Engineering en
dc.identifier.doi 10.1080/174159701088027771 en
dc.identifier.isi ISI:000171024800004 en
dc.identifier.volume 9 en
dc.identifier.issue 4 en
dc.identifier.spage 389 en
dc.identifier.epage 412 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής