HEAL DSpace

Microstructure in linear elasticity and scale effects: A reconsideration of basic rock mechanics and rock fracture mechanics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Exadaktylos, GE en
dc.contributor.author Vardoulakis, I en
dc.date.accessioned 2014-03-01T01:16:45Z
dc.date.available 2014-03-01T01:16:45Z
dc.date.issued 2001 en
dc.identifier.issn 0040-1951 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14194
dc.subject Brittle geomaterials en
dc.subject Elasticity en
dc.subject Fracture mechanics en
dc.subject Microstructure en
dc.subject Rock mechanics en
dc.subject Size effect en
dc.subject.classification Geochemistry & Geophysics en
dc.subject.other deformation en
dc.subject.other elasticity en
dc.subject.other fracture en
dc.subject.other rock mechanics en
dc.subject.other scale effect en
dc.subject.other structural geology en
dc.title Microstructure in linear elasticity and scale effects: A reconsideration of basic rock mechanics and rock fracture mechanics en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0040-1951(01)00047-6 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0040-1951(01)00047-6 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract An account on the role of higher order strain gradients in the mechanical behavior of elastic-perfectly brittle materials, such as rocks, is given that is based on a special grade-2 elasticity theory with surface energy as this was originated by Casal and Mindlin and further elaborated by the authors. The fundamental idea behind the theory is that the effect of the granular and polycrystalline nature of geomaterials (i.e. their microstructural features) on their macroscopic response may be modeled through the concept of volume cohesion forces, as well as surface forces rather than through intractable statistical mechanics concepts of the Boltzmann type. It is shown that the important phenomena of the localization of deformation in macroscopically homogeneous rocks under uniform tractions and of dependence of rock behavior on the specimen's dimensions, commonly known as size or scale effect, can be interpreted by using this 'non-local', higher order theory. These effects are demonstrated for the cases of the unidirectional tension test, and for the small circular hole under uniform internal pressure commonly known as the inflation test. The latter configuration can be taken as a first order approximation of the indentation test that is frequently used for the laboratory or in situ characterization of geomaterials. In addition, it is shown that the solution of the three basic crack deformation modes leads to cusping of the crack tips that is caused by the action of 'cohesive' double forces behind and very close to the tips, that tend to bring the two opposite crack lips in close contact, and further, it is demonstrated that the fracture toughness depends on the size of the crack, and thus it is not a fundamental property of the material. This latter outcome agrees with experimental results which indicate that materials with smaller cracks are more resistant to fracture than those with larger cracks. (C) 2001 Elsevier Science B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Tectonophysics en
dc.identifier.doi 10.1016/S0040-1951(01)00047-6 en
dc.identifier.isi ISI:000170090600007 en
dc.identifier.volume 335 en
dc.identifier.issue 1-2 en
dc.identifier.spage 81 en
dc.identifier.epage 109 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής