HEAL DSpace

NeuroFAST: On-line neuro-fuzzy ART-based structure and parameter learning TSK model

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzafestas, SG en
dc.contributor.author Zikidis, KC en
dc.date.accessioned 2014-03-01T01:16:47Z
dc.date.available 2014-03-01T01:16:47Z
dc.date.issued 2001 en
dc.identifier.issn 1083-4419 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14222
dc.subject δ rule en
dc.subject Fuzzy ART learning en
dc.subject Structure/parameter identification en
dc.subject Takagi-Sugeno-Kang (TSK) fuzzy reasoning model en
dc.subject.classification Automation & Control Systems en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Cybernetics en
dc.subject.other Algorithms en
dc.subject.other Artificial intelligence en
dc.subject.other Computer simulation en
dc.subject.other Convergence of numerical methods en
dc.subject.other Fuzzy sets en
dc.subject.other Learning systems en
dc.subject.other Linear equations en
dc.subject.other Adaptive resonance theory (ART) en
dc.subject.other Neural networks en
dc.title NeuroFAST: On-line neuro-fuzzy ART-based structure and parameter learning TSK model en
heal.type journalArticle en
heal.identifier.primary 10.1109/3477.956041 en
heal.identifier.secondary http://dx.doi.org/10.1109/3477.956041 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract NeuroFAST is an on-line fuzzy modeling learning algorithm, featuring high function approximation accuracy and fast convergence. It is based on a first-order Takagi-Sugeno-Kang (TSK) model, where the consequence part of each fuzzy rule is a linear equation. Structure identification is performed by a fuzzy adaptive resonance theory (ART)-like mechanism, assisted by fuzzy rule splitting and adding procedures. The well known delta rule continuously performs parameter identification on both premise and consequence parameters. Simulation results indicate the potential of the algorithm. It is worth noting that NeuroFAST achieves a remarkable performance in the Box and Jenkins gas furnace process, outperforming all previous approaches compared. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics en
dc.identifier.doi 10.1109/3477.956041 en
dc.identifier.isi ISI:000171543000013 en
dc.identifier.volume 31 en
dc.identifier.issue 5 en
dc.identifier.spage 797 en
dc.identifier.epage 802 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής