dc.contributor.author |
Tzafestas, SG |
en |
dc.contributor.author |
Zikidis, KC |
en |
dc.date.accessioned |
2014-03-01T01:16:47Z |
|
dc.date.available |
2014-03-01T01:16:47Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
1083-4419 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14222 |
|
dc.subject |
δ rule |
en |
dc.subject |
Fuzzy ART learning |
en |
dc.subject |
Structure/parameter identification |
en |
dc.subject |
Takagi-Sugeno-Kang (TSK) fuzzy reasoning model |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Computer Science, Cybernetics |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Linear equations |
en |
dc.subject.other |
Adaptive resonance theory (ART) |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
NeuroFAST: On-line neuro-fuzzy ART-based structure and parameter learning TSK model |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/3477.956041 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/3477.956041 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
NeuroFAST is an on-line fuzzy modeling learning algorithm, featuring high function approximation accuracy and fast convergence. It is based on a first-order Takagi-Sugeno-Kang (TSK) model, where the consequence part of each fuzzy rule is a linear equation. Structure identification is performed by a fuzzy adaptive resonance theory (ART)-like mechanism, assisted by fuzzy rule splitting and adding procedures. The well known delta rule continuously performs parameter identification on both premise and consequence parameters. Simulation results indicate the potential of the algorithm. It is worth noting that NeuroFAST achieves a remarkable performance in the Box and Jenkins gas furnace process, outperforming all previous approaches compared. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics |
en |
dc.identifier.doi |
10.1109/3477.956041 |
en |
dc.identifier.isi |
ISI:000171543000013 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
797 |
en |
dc.identifier.epage |
802 |
en |