dc.contributor.author |
Hu, S |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:16:48Z |
|
dc.date.available |
2014-03-01T01:16:48Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0009725X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14227 |
|
dc.subject |
boundedly inversely compact |
en |
dc.subject |
equality in the sense of distributions |
en |
dc.subject |
maximal monotone operators |
en |
dc.subject |
Neumann problems |
en |
dc.subject |
subdifferentials |
en |
dc.subject |
trace maps and spaces |
en |
dc.title |
Nonlinear elliptic problems of Neumann-type |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02843918 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02843918 |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
In this paper we study a nonlinear elliptic differential equation driven by the p-Laplacian with a multivalued boundary condition of the Neumann type. Using techniques from the theory of maximal monotone operators and a theorem of the range of the sum of monotone operators, we prove the existence of a (strong) solution. © 2001 Springer. |
en |
heal.journalName |
Rendiconti del Circolo Matematico di Palermo |
en |
dc.identifier.doi |
10.1007/BF02843918 |
en |
dc.identifier.volume |
50 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
47 |
en |
dc.identifier.epage |
66 |
en |