dc.contributor.author |
Mitsoulis, E |
en |
dc.date.accessioned |
2014-03-01T01:16:49Z |
|
dc.date.available |
2014-03-01T01:16:49Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0377-0257 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14241 |
|
dc.subject |
entry flow |
en |
dc.subject |
polymer melts |
en |
dc.subject |
uniaxial elongational viscosity |
en |
dc.subject |
planar extensional viscosity |
en |
dc.subject |
vortex growth |
en |
dc.subject |
viscoelasticity |
en |
dc.subject |
integral constitutive equations |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Creep |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Kinematics |
en |
dc.subject.other |
Low density polyethylenes |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Relaxation processes |
en |
dc.subject.other |
Shear stress |
en |
dc.subject.other |
Strain rate |
en |
dc.subject.other |
Stress analysis |
en |
dc.subject.other |
Viscous flow |
en |
dc.subject.other |
Vortex flow |
en |
dc.subject.other |
Entry flow |
en |
dc.subject.other |
Papanastasiou-Scriven-Macosko models |
en |
dc.subject.other |
Planar extensional viscosity |
en |
dc.subject.other |
Polymer melts |
en |
dc.subject.other |
Uniaxial elongational viscosity |
en |
dc.subject.other |
Non Newtonian flow |
en |
dc.subject.other |
fluid flow |
en |
dc.subject.other |
melting |
en |
dc.subject.other |
polymer |
en |
dc.subject.other |
shear flow |
en |
dc.subject.other |
viscosity |
en |
dc.title |
Numerical simulation of entry flow of the IUPAC-LDPE melt |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0377-0257(00)00183-X |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0377-0257(00)00183-X |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
Numerical simulations have been undertaken for the creeping entry flow of a well-characterized polymer melt (IUPAC-LDPE) in a 4:1 axisymmetric and a 14:1 planar contraction. The fluid has been modeled using an integral constitutive equation of the K-BKZ type with a spectrum of relaxation times (Papanastasiou-Scriven-Macosko or PSM model). Numerical values for the constants appearing in the equation have been obtained from fitting shear viscosity and normal stress data as measured in shear and elongational data from uniaxial elongation experiments. The numerical solutions show that in the axisymmetric contraction the vortex in the reservoir first increases with increasing flow rate (or apparent shear rate), goes through a maximum and then decreases following the behavior of the uniaxial elongational viscosity. For the planar contraction, the vortex diminishes monotonically with increasing flow rate following the planar extensional viscosity. This kinematic behavior is not in agreement with recent experiments. The PSM strain-memory function of the model is then modified to account for strain-hardening in planar extension. Then the vortex pattern shows an increase in both axisymmetric and planar flows. The results for planar flow are compared with recent experiments showing the correct trend. (C) 2001 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
Elsevier Science Publishers B.V., Amsterdam, Netherlands |
en |
heal.journalName |
Journal of Non-Newtonian Fluid Mechanics |
en |
dc.identifier.doi |
10.1016/S0377-0257(00)00183-X |
en |
dc.identifier.isi |
ISI:000166757100002 |
en |
dc.identifier.volume |
97 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
13 |
en |
dc.identifier.epage |
30 |
en |