HEAL DSpace

Numerical simulation of entry flow of the IUPAC-LDPE melt

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitsoulis, E en
dc.date.accessioned 2014-03-01T01:16:49Z
dc.date.available 2014-03-01T01:16:49Z
dc.date.issued 2001 en
dc.identifier.issn 0377-0257 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14241
dc.subject entry flow en
dc.subject polymer melts en
dc.subject uniaxial elongational viscosity en
dc.subject planar extensional viscosity en
dc.subject vortex growth en
dc.subject viscoelasticity en
dc.subject integral constitutive equations en
dc.subject.classification Mechanics en
dc.subject.other Computer simulation en
dc.subject.other Creep en
dc.subject.other Integral equations en
dc.subject.other Kinematics en
dc.subject.other Low density polyethylenes en
dc.subject.other Mathematical models en
dc.subject.other Relaxation processes en
dc.subject.other Shear stress en
dc.subject.other Strain rate en
dc.subject.other Stress analysis en
dc.subject.other Viscous flow en
dc.subject.other Vortex flow en
dc.subject.other Entry flow en
dc.subject.other Papanastasiou-Scriven-Macosko models en
dc.subject.other Planar extensional viscosity en
dc.subject.other Polymer melts en
dc.subject.other Uniaxial elongational viscosity en
dc.subject.other Non Newtonian flow en
dc.subject.other fluid flow en
dc.subject.other melting en
dc.subject.other polymer en
dc.subject.other shear flow en
dc.subject.other viscosity en
dc.title Numerical simulation of entry flow of the IUPAC-LDPE melt en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0377-0257(00)00183-X en
heal.identifier.secondary http://dx.doi.org/10.1016/S0377-0257(00)00183-X en
heal.language English en
heal.publicationDate 2001 en
heal.abstract Numerical simulations have been undertaken for the creeping entry flow of a well-characterized polymer melt (IUPAC-LDPE) in a 4:1 axisymmetric and a 14:1 planar contraction. The fluid has been modeled using an integral constitutive equation of the K-BKZ type with a spectrum of relaxation times (Papanastasiou-Scriven-Macosko or PSM model). Numerical values for the constants appearing in the equation have been obtained from fitting shear viscosity and normal stress data as measured in shear and elongational data from uniaxial elongation experiments. The numerical solutions show that in the axisymmetric contraction the vortex in the reservoir first increases with increasing flow rate (or apparent shear rate), goes through a maximum and then decreases following the behavior of the uniaxial elongational viscosity. For the planar contraction, the vortex diminishes monotonically with increasing flow rate following the planar extensional viscosity. This kinematic behavior is not in agreement with recent experiments. The PSM strain-memory function of the model is then modified to account for strain-hardening in planar extension. Then the vortex pattern shows an increase in both axisymmetric and planar flows. The results for planar flow are compared with recent experiments showing the correct trend. (C) 2001 Elsevier Science B.V. All rights reserved. en
heal.publisher Elsevier Science Publishers B.V., Amsterdam, Netherlands en
heal.journalName Journal of Non-Newtonian Fluid Mechanics en
dc.identifier.doi 10.1016/S0377-0257(00)00183-X en
dc.identifier.isi ISI:000166757100002 en
dc.identifier.volume 97 en
dc.identifier.issue 1 en
dc.identifier.spage 13 en
dc.identifier.epage 30 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής