dc.contributor.author |
Anagnostopoulos, J |
en |
dc.contributor.author |
Bergeles, G |
en |
dc.contributor.author |
Epple, B |
en |
dc.contributor.author |
Stegelitz, P |
en |
dc.date.accessioned |
2014-03-01T01:16:49Z |
|
dc.date.available |
2014-03-01T01:16:49Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0098-2202 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14242 |
|
dc.subject |
Numerical Simulation |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
3D simulations |
en |
dc.subject.other |
Complex dynamics |
en |
dc.subject.other |
Control volume methods |
en |
dc.subject.other |
Domain geometry |
en |
dc.subject.other |
Drying performance |
en |
dc.subject.other |
Finite difference |
en |
dc.subject.other |
Fluid-particle interaction |
en |
dc.subject.other |
Fragmentation mechanism |
en |
dc.subject.other |
Fuel mass |
en |
dc.subject.other |
Gas phase equations |
en |
dc.subject.other |
Lagrangian formulations |
en |
dc.subject.other |
Local grid refinement |
en |
dc.subject.other |
Mill performance |
en |
dc.subject.other |
Moisture evaporation |
en |
dc.subject.other |
Numerical algorithms |
en |
dc.subject.other |
Numerical techniques |
en |
dc.subject.other |
Operation characteristic |
en |
dc.subject.other |
Particle collision |
en |
dc.subject.other |
Particle dispersion model |
en |
dc.subject.other |
Special treatments |
en |
dc.subject.other |
Thermal behaviors |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Fossil fuels |
en |
dc.subject.other |
Inlet flow |
en |
dc.subject.other |
Lignite |
en |
dc.subject.other |
Stochastic models |
en |
dc.subject.other |
Three dimensional computer graphics |
en |
dc.subject.other |
Two phase flow |
en |
dc.subject.other |
Algorithms |
en |
dc.title |
Numerical simulation of grinding and drying performance of a fluid-energy lignite mill |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1115/1.1350820 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1115/1.1350820 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
A numerical algorithm is developed for a detailed 3D simulation of the two-phase flow field in fluid-energy mills used for pulverization and drying of fossil fuels in large power plants. The gas phase equations are solved using finite differences and the control volume method, whereas a Lagrangian formulation with a stochastic particle dispersion model is adopted for the particulate phase. Fluid-particle interaction is taken into account to calculate the mass, momentum, and heat transfer between phases. Advanced numerical techniques for partially-blocked cells and local grid refinement have been utilized to achieve an accurate representation of the domain geometry and to enhance the accuracy of the results. Particle collisions, fragmentation mechanism, and moisture evaporation are simulated by corresponding models, whereas the special treatment employed for the rotating fan region provides the capability to solve the two-phase flow simultaneously in the entire rotating and nonrotating mill domain. The flow and the operation characteristics of a recently developed lignite mill are measured, and the numerical algorithm is used to predict the mill performance under various inlet profiles of the fuel mass flow rate. The predicted results are reasonable, and in agreement with the available measurements and observations, thus offering a deeper insight into the complex dynamic and thermal behavior of the two-phase flow in the mill. © 2001 ASME. |
en |
heal.publisher |
ASME-AMER SOC MECHANICAL ENG |
en |
heal.journalName |
Journal of Fluids Engineering, Transactions of the ASME |
en |
dc.identifier.doi |
10.1115/1.1350820 |
en |
dc.identifier.isi |
ISI:000169370800014 |
en |
dc.identifier.volume |
123 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
303 |
en |
dc.identifier.epage |
310 |
en |