dc.contributor.author |
Koronaki, ED |
en |
dc.contributor.author |
Liakos, HH |
en |
dc.contributor.author |
Founti, MA |
en |
dc.contributor.author |
Markatos, NC |
en |
dc.date.accessioned |
2014-03-01T01:16:49Z |
|
dc.date.available |
2014-03-01T01:16:49Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0307-904X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14244 |
|
dc.subject |
Non-equilibrium parameters |
en |
dc.subject |
Second-moment closure |
en |
dc.subject |
Sudden expansion |
en |
dc.subject |
Turbulence |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Diesel fuels |
en |
dc.subject.other |
Kinetic energy |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Pipe flow |
en |
dc.subject.other |
Two equation closures |
en |
dc.subject.other |
Turbulent flow |
en |
dc.subject.other |
diesel |
en |
dc.subject.other |
expansion |
en |
dc.subject.other |
mathematical method |
en |
dc.subject.other |
pipe flow |
en |
dc.subject.other |
turbulent flow |
en |
dc.title |
Numerical study of turbulent diesel flow in a pipe with sudden expansion |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0307-904X(00)00055-X |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0307-904X(00)00055-X |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
Three two-equation models and a second-moment closure are implemented in the case of turbulent diesel flow in a pipe with sudden expansion. The chosen two-equation closures are: the standard k-epsilon, the RNG k-epsilon and the two-scale k-epsilon models. The performance of the models is investigated with regard to the non-equilibrium parameter eta and the mean strain of the flow, S. Velocity and turbulence kinetic energy predictions of the different models are compared among themselves and with experimental data and are interpreted on the basis of the aforementioned quantities. The effect of more accurate near-wall modeling to the two-equation models is also investigated. The results of the study demonstrate the superiority of the second-moment closure in predicting the flow characteristics over the entire domain. From the two-equation models the RNG derived k-epsilon model also gave very good predictions, especially when nonequilibrium wall-functions were implemented. As far as eta and S are concerned, only the closures with greater physical consistency, such as the two-scale k-epsilon model, give satisfactory results. (C) 2001 Elsevier Science Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematical Modelling |
en |
dc.identifier.doi |
10.1016/S0307-904X(00)00055-X |
en |
dc.identifier.isi |
ISI:000168759000004 |
en |
dc.identifier.volume |
25 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
319 |
en |
dc.identifier.epage |
333 |
en |