HEAL DSpace

On circulant best matrices and their applications

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgiou, S en
dc.contributor.author Koukouvinos, C en
dc.contributor.author Seberry, J en
dc.date.accessioned 2014-03-01T01:16:49Z
dc.date.available 2014-03-01T01:16:49Z
dc.date.issued 2001 en
dc.identifier.issn 0308-1087 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14246
dc.subject Circulant matrices en
dc.subject Hadamard matrices en
dc.subject Orthogonal designs en
dc.subject Supplementary difference sets en
dc.subject.classification Mathematics en
dc.subject.other HADAMARD-MATRICES en
dc.subject.other CLASSIFICATION en
dc.title On circulant best matrices and their applications en
heal.type journalArticle en
heal.identifier.primary 10.1080/03081080108818672 en
heal.identifier.secondary http://dx.doi.org/10.1080/03081080108818672 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract Call four type 1 (1, -1) matrices, X1, X2, X3, X4, on the same group of order m (odd) with the properties (i) (Xi-I)T = -(Xi-I), i=1, 2, 3, (ii) X4T = X4 and the diagonal elements are positive, (iii) XiXj=XjXi and (iv) X1X1T + X2X2T + X3X3T + X4X4T = 4mIm, best matrices. We use a computer to give, for the first time, all inequivalent best matrices of odd order m ≤ 31. Inequivalent best matrices of order m, m odd, can be used to find inequivalent skew-Hadamard matrices of order 4m. We use best matrices of order (1/4) (s2+3) to construct new orthogonal designs, including new OD(2s2+6; 1, 1, 2, 2, s2, s2). © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint. en
heal.publisher GORDON BREACH PUBLISHING, TAYLOR & FRANCIS GROUP en
heal.journalName Linear and Multilinear Algebra en
dc.identifier.doi 10.1080/03081080108818672 en
dc.identifier.isi ISI:000168265300004 en
dc.identifier.volume 48 en
dc.identifier.issue 3 en
dc.identifier.spage 263 en
dc.identifier.epage 274 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής