HEAL DSpace

On the automated recognition of seriously distorted musical recordings

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fragoulis, D en
dc.contributor.author Rousopoulos, G en
dc.contributor.author Panagopoulos, T en
dc.contributor.author Alexiou, C en
dc.contributor.author Papaodysseus, C en
dc.date.accessioned 2014-03-01T01:16:50Z
dc.date.available 2014-03-01T01:16:50Z
dc.date.issued 2001 en
dc.identifier.issn 1053-587X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14251
dc.subject Automatic music recognition en
dc.subject Distorted in frequency recordings en
dc.subject Fuzzy logic and music en
dc.subject Music pattern recognition en
dc.subject Music processing en
dc.subject Musical recording automated recognition en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Acoustic signal processing en
dc.subject.other Algorithms en
dc.subject.other Database systems en
dc.subject.other Feature extraction en
dc.subject.other Frequencies en
dc.subject.other Fuzzy sets en
dc.subject.other Parallel processing systems en
dc.subject.other Pattern recognition en
dc.subject.other Performance en
dc.subject.other Sound recording en
dc.subject.other Automated recognition-identification en
dc.subject.other Automatic music recognition en
dc.subject.other Frequency band distortion en
dc.subject.other Frequency recording en
dc.subject.other Music pattern recognition en
dc.subject.other Musical recording en
dc.subject.other Acoustic distortion en
dc.title On the automated recognition of seriously distorted musical recordings en
heal.type journalArticle en
heal.identifier.primary 10.1109/78.912932 en
heal.identifier.secondary http://dx.doi.org/10.1109/78.912932 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract In this paper, a new methodology is presented for the automated recognition-identification of musical recordings that have suffered from a high degree of playing speed and frequency band distortion. The procedure of recognition is essentially based on the comparison between an unknown musical recording and a set of model ones, according to some predefined specific characteristics of the signals. In order to extract these characteristics from a musical recording, novel feature extraction algorithms are employed. This procedure is applied to the whole set of model musical recordings, thus creating a model characteristic database. Each time we want an unknown musical recording to be identified, the same procedure is applied to it, and subsequently, the derived characteristics are compared with the database contents via an introduced set of criteria. The proposed methodology led to the development of a system whose performance was extensively tested with various types of broadcasted musical recordings. The system performed successful recognition for the 94% of the tested recordings. It should be noted that the presented system is parallelizable and can operate in real time. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Signal Processing en
dc.identifier.doi 10.1109/78.912932 en
dc.identifier.isi ISI:000167587600021 en
dc.identifier.volume 49 en
dc.identifier.issue 4 en
dc.identifier.spage 898 en
dc.identifier.epage 908 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής