HEAL DSpace

On-line dynamic security classification using probabilistic neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gavoyiannis, AE en
dc.contributor.author Hatziargyriou, ND en
dc.date.accessioned 2014-03-01T01:16:55Z
dc.date.available 2014-03-01T01:16:55Z
dc.date.issued 2001 en
dc.identifier.issn 0969-1170 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14262
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0035358974&partnerID=40&md5=8273723d79c0b08decac9fe8d78072da en
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0035358974&partnerID=40&md5=8273723d79c0b08decac9fe8d78072da en
dc.subject Convenient maintenance en
dc.subject Gaussian mixtures en
dc.subject Maximum likelihood (ML) en
dc.subject Parallel process en
dc.subject Probabilistic neural network (PNN) en
dc.subject Probability density function (PDF) en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Decision making en
dc.subject.other Electric power system protection en
dc.subject.other Maximum likelihood estimation en
dc.subject.other Neural networks en
dc.subject.other Online systems en
dc.subject.other Parallel processing systems en
dc.subject.other Pattern recognition en
dc.subject.other Probabilistic logics en
dc.subject.other Probability density function en
dc.subject.other Gaussian mixtures en
dc.subject.other Online security classification en
dc.subject.other Security systems en
dc.title On-line dynamic security classification using probabilistic neural networks en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2001 en
heal.abstract This paper addresses the problem of on-line dynamic security classification of electrical power systems using multiclass pattern recognition with Probabilistic Neural Networks. The various patterns are recognized by supervised learning with posterior probabilities of an input sample belonging to each class. These probabilities can be used in a subsequent decision-making stage to arrive at a classification. The learning of each class can be performed in parallel. Results regarding performance of the proposed pattern recognition tested on the dynamic security of an actual island power system are presented and discussed. en
heal.publisher C R L PUBLISHING LTD en
heal.journalName International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications en
dc.identifier.isi ISI:000169744600003 en
dc.identifier.volume 9 en
dc.identifier.issue 2 en
dc.identifier.spage 83 en
dc.identifier.epage 89 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής