dc.contributor.author |
Gavoyiannis, AE |
en |
dc.contributor.author |
Hatziargyriou, ND |
en |
dc.date.accessioned |
2014-03-01T01:16:55Z |
|
dc.date.available |
2014-03-01T01:16:55Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0969-1170 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14262 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0035358974&partnerID=40&md5=8273723d79c0b08decac9fe8d78072da |
en |
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0035358974&partnerID=40&md5=8273723d79c0b08decac9fe8d78072da |
en |
dc.subject |
Convenient maintenance |
en |
dc.subject |
Gaussian mixtures |
en |
dc.subject |
Maximum likelihood (ML) |
en |
dc.subject |
Parallel process |
en |
dc.subject |
Probabilistic neural network (PNN) |
en |
dc.subject |
Probability density function (PDF) |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Decision making |
en |
dc.subject.other |
Electric power system protection |
en |
dc.subject.other |
Maximum likelihood estimation |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Online systems |
en |
dc.subject.other |
Parallel processing systems |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Probabilistic logics |
en |
dc.subject.other |
Probability density function |
en |
dc.subject.other |
Gaussian mixtures |
en |
dc.subject.other |
Online security classification |
en |
dc.subject.other |
Security systems |
en |
dc.title |
On-line dynamic security classification using probabilistic neural networks |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
This paper addresses the problem of on-line dynamic security classification of electrical power systems using multiclass pattern recognition with Probabilistic Neural Networks. The various patterns are recognized by supervised learning with posterior probabilities of an input sample belonging to each class. These probabilities can be used in a subsequent decision-making stage to arrive at a classification. The learning of each class can be performed in parallel. Results regarding performance of the proposed pattern recognition tested on the dynamic security of an actual island power system are presented and discussed. |
en |
heal.publisher |
C R L PUBLISHING LTD |
en |
heal.journalName |
International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications |
en |
dc.identifier.isi |
ISI:000169744600003 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
83 |
en |
dc.identifier.epage |
89 |
en |