HEAL DSpace

Orientation distribution function in non-affine rotations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dafalias, YF en
dc.date.accessioned 2014-03-01T01:16:55Z
dc.date.available 2014-03-01T01:16:55Z
dc.date.issued 2001 en
dc.identifier.issn 0022-5096 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14268
dc.subject A. Microstructures en
dc.subject A. Voids and inclusions en
dc.subject B. Anisotropic material en
dc.subject C. Constitutive behavior en
dc.subject Orientation distribution function en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Condensed Matter en
dc.subject.other Anisotropy en
dc.subject.other Crystal microstructure en
dc.subject.other Deformation en
dc.subject.other Gradient methods en
dc.subject.other Orientation distribution functions (ODF) en
dc.subject.other Crystal orientation en
dc.title Orientation distribution function in non-affine rotations en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0022-5096(01)00065-5 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0022-5096(01)00065-5 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract The orientation distribution function (ODF) for a class of directional elements, represented by unit vectors or orthonormal triads, which are embedded in a deforming continuum, is obtained by a novel approach in closed analytical form as a function of appropriate deformation and rotation measures, for orientational processes which can be characterized as non-affine rotations. The main conceptual innovation is the introduction of a fictitious motion defined locally in the neighborhood of a material point, such that a directional element which follows non-affine rotation in relation to the real motion, follows affine rotation in relation to the fictitious motion. A key point of the analysis is the time integration of the velocity gradient of the fictitious motion under steady-state conditions for the real velocity gradient, in order to obtain the corresponding local fictitious deformation gradient, from which the ODF for non-affine rotations is calculated by standard methods applicable to affine rotations. Many examples illustrate the foregoing theoretical findings. The ODFs associated with sequences of different deformation processes, which were too difficult to yield a solution in the past, are now readily obtained by the above approach for both affine and non-affine rotations, while previously reported results are retrieved as particular cases with a modicum of analytical calculations. (C) 2001 Elsevier Science Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Journal of the Mechanics and Physics of Solids en
dc.identifier.doi 10.1016/S0022-5096(01)00065-5 en
dc.identifier.isi ISI:000171975600004 en
dc.identifier.volume 49 en
dc.identifier.issue 11 en
dc.identifier.spage 2493 en
dc.identifier.epage 2516 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής