dc.contributor.author |
Provatidis, Ch |
en |
dc.contributor.author |
Kanarachos, A |
en |
dc.date.accessioned |
2014-03-01T01:16:56Z |
|
dc.date.available |
2014-03-01T01:16:56Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0045-7949 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14273 |
|
dc.subject |
Axisymmetric |
en |
dc.subject |
Computer aided design |
en |
dc.subject |
Coons' interpolation |
en |
dc.subject |
Finite elements |
en |
dc.subject |
Global interpolation |
en |
dc.subject |
Macro-elements |
en |
dc.subject |
Potential problems |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Computer aided design |
en |
dc.subject.other |
Degrees of freedom (mechanics) |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Interpolation |
en |
dc.subject.other |
Axisymmetric potential problems |
en |
dc.subject.other |
Problem solving |
en |
dc.title |
Performance of a macro-FEM approach using global interpolation (Coons') functions in axisymmetric potential problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0045-7949(01)00101-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0045-7949(01)00101-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
This paper extends a previously presented global functional set and investigates its performance in axisymmetric potential problems. The main idea is to build-up isoparametric finite elements based on the interpolation formula developed by S.A. Coons for arbitrary-shaped CAD patches. This formula allows the global interpolation of the potential within the whole domain and leads to ""large"" elements, called ""macro-elements"". The degrees of freedom appear only at the element boundaries and can be used in the solution of both static and dynamic problems. Numerical results sustain the proposed method, which is successfully compared with conventional finite elements, boundary elements and exact analytical solutions. © 2001 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers and Structures |
en |
dc.identifier.doi |
10.1016/S0045-7949(01)00101-8 |
en |
dc.identifier.isi |
ISI:000171430400003 |
en |
dc.identifier.volume |
79 |
en |
dc.identifier.issue |
19 |
en |
dc.identifier.spage |
1769 |
en |
dc.identifier.epage |
1779 |
en |