dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Papalini, F |
en |
dc.date.accessioned |
2014-03-01T01:16:56Z |
|
dc.date.available |
2014-03-01T01:16:56Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
02534142 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14276 |
|
dc.subject |
Arzela-Ascoli theorem |
en |
dc.subject |
Caratheodory function |
en |
dc.subject |
Compact embedding |
en |
dc.subject |
Dunford-Pettis theorem |
en |
dc.subject |
Extremal solution |
en |
dc.subject |
Lower solution |
en |
dc.subject |
Order interval |
en |
dc.subject |
Penalty function |
en |
dc.subject |
Periodic problem |
en |
dc.subject |
Sobolev space |
en |
dc.subject |
Sturm-Liouville boundary conditions |
en |
dc.subject |
Truncation map |
en |
dc.subject |
Upper solution |
en |
dc.title |
Periodic and boundary value problems for second order differential equations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02829543 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02829543 |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
In this paper we study second order scalar differential equations with Sturm-Liouville and periodic boundary conditions. The vector field f(t, x, y) is Caratheodory and in some instances the continuity condition on x or y is replaced by a monotonicity type hypothesis. Using the method of upper and lower solutions as well as truncation and penalization techniques, we show the existence of solutions and extremal solutions in the order interval determined by the upper and lower solutions. Also we establish some properties of the solutions and of the set they form. |
en |
heal.journalName |
Proceedings of the Indian Academy of Sciences: Mathematical Sciences |
en |
dc.identifier.doi |
10.1007/BF02829543 |
en |
dc.identifier.volume |
111 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
107 |
en |
dc.identifier.epage |
125 |
en |