dc.contributor.author |
Papadimitriou, AG |
en |
dc.contributor.author |
Bouckovalas, GD |
en |
dc.contributor.author |
Dafalias, YF |
en |
dc.date.accessioned |
2014-03-01T01:16:57Z |
|
dc.date.available |
2014-03-01T01:16:57Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
1090-0241 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14285 |
|
dc.subject |
Constitutive Model |
en |
dc.subject |
Pore Pressure |
en |
dc.subject |
Shear Modulus |
en |
dc.subject.classification |
Engineering, Geological |
en |
dc.subject.classification |
Geosciences, Multidisciplinary |
en |
dc.subject.other |
Cyclic strains |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Elastic moduli |
en |
dc.subject.other |
Liquefaction |
en |
dc.subject.other |
Plasticity testing |
en |
dc.subject.other |
Sand |
en |
dc.subject.other |
Strain measurement |
en |
dc.subject.other |
constitutive equation |
en |
dc.subject.other |
cyclic loading |
en |
dc.subject.other |
plasticity |
en |
dc.subject.other |
sand |
en |
dc.subject.other |
stress-strain relationship |
en |
dc.title |
Plasticity model for sand under small and large cyclic strains |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)1090-0241(2001)127:11(973) |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)1090-0241(2001)127:11(973) |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
A plasticity constitutive model for sands is proposed, which combines a bounding surface framework for large cyclic strains with a Ramberg-Osgood-type hysteretic formulation for relatively smaller strains. The distinction between small and large cyclic strains is based on the volumetric threshold cyclic shear strain gamma (tv), a well-established geotechnical parameter. The state parameter psi is used explicitly to interrelate the critical, peak-, and dilatancy deviatoric stress ratios. The plastic modulus is expressed as a particular function of accumulated plastic volumetric strain, which simulates empirically the effect of fabric evolution during shearing. Extensive comparisons with experiments show accurate simulation of the basic aspects of cyclic behavior for a wide range of cyclic strain amplitudes, specifically, (1) the degradation of shear modulus and increase of hysteretic damping with cyclic shear strain amplitude; (2) the evolving rates of shear strain and excess pore pressure (or volumetric strain) accumulation with number of cycles; and (3) the resistance to liquefaction, The 14 model parameters are proven independent of initial and drainage conditions, as well as the cyclic shear strain amplitude. The simulation of monotonic shearing is equally accurate. |
en |
heal.publisher |
ASCE-AMER SOC CIVIL ENGINEERS |
en |
heal.journalName |
Journal of Geotechnical and Geoenvironmental Engineering |
en |
dc.identifier.doi |
10.1061/(ASCE)1090-0241(2001)127:11(973) |
en |
dc.identifier.isi |
ISI:000171788100008 |
en |
dc.identifier.volume |
127 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
973 |
en |
dc.identifier.epage |
983 |
en |