dc.contributor.author |
Politopoulos, K |
en |
dc.contributor.author |
Georgakopoulos, GF |
en |
dc.contributor.author |
Tsanakas, P |
en |
dc.date.accessioned |
2014-03-01T01:16:58Z |
|
dc.date.available |
2014-03-01T01:16:58Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0010-4620 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14290 |
|
dc.subject.classification |
Computer Science, Hardware & Architecture |
en |
dc.subject.classification |
Computer Science, Information Systems |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computational complexity |
en |
dc.subject.other |
Constraint theory |
en |
dc.subject.other |
Graph theory |
en |
dc.subject.other |
Online systems |
en |
dc.subject.other |
Polynomials |
en |
dc.subject.other |
Response time (computer systems) |
en |
dc.subject.other |
Scheduling |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Limited lookahead technique |
en |
dc.subject.other |
Precedence constrained scheduling |
en |
dc.subject.other |
Task graphs |
en |
dc.subject.other |
Unit execution time |
en |
dc.subject.other |
Parallel processing systems |
en |
dc.title |
Precedence constrained scheduling: A case in P |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1093/comjnl/44.3.163 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1093/comjnl/44.3.163 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
'Unit execution time' precedence constrained scheduling (UET) is an NP-complete problem with very few special cases known to be solvable in P-time. In this article we present a practically useful case of UET solvable in P-time: We show that if the task graph is given in levels that are 'locally' of in-degree two and of 'width' more than 1.55 times the number of processors (plus 1), then an optimal schedule can be found in P-time. Task graphs which represent algebraic computations fall ordinarily in this category. Our algorithm is based on a limited look-ahead technique which allows us to use it in an on-line fashion. In the appendix we give two short NP-completeness proofs which suggest that both 'width' and 'degree' restrictions are needed to get a polynomially solvable subcase. |
en |
heal.publisher |
OXFORD UNIV PRESS |
en |
heal.journalName |
Computer Journal |
en |
dc.identifier.doi |
10.1093/comjnl/44.3.163 |
en |
dc.identifier.isi |
ISI:000169766600003 |
en |
dc.identifier.volume |
44 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
163 |
en |
dc.identifier.epage |
173 |
en |