HEAL DSpace

Precedence constrained scheduling: A case in P

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Politopoulos, K en
dc.contributor.author Georgakopoulos, GF en
dc.contributor.author Tsanakas, P en
dc.date.accessioned 2014-03-01T01:16:58Z
dc.date.available 2014-03-01T01:16:58Z
dc.date.issued 2001 en
dc.identifier.issn 0010-4620 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14290
dc.subject.classification Computer Science, Hardware & Architecture en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.other Algorithms en
dc.subject.other Computational complexity en
dc.subject.other Constraint theory en
dc.subject.other Graph theory en
dc.subject.other Online systems en
dc.subject.other Polynomials en
dc.subject.other Response time (computer systems) en
dc.subject.other Scheduling en
dc.subject.other Theorem proving en
dc.subject.other Limited lookahead technique en
dc.subject.other Precedence constrained scheduling en
dc.subject.other Task graphs en
dc.subject.other Unit execution time en
dc.subject.other Parallel processing systems en
dc.title Precedence constrained scheduling: A case in P en
heal.type journalArticle en
heal.identifier.primary 10.1093/comjnl/44.3.163 en
heal.identifier.secondary http://dx.doi.org/10.1093/comjnl/44.3.163 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract 'Unit execution time' precedence constrained scheduling (UET) is an NP-complete problem with very few special cases known to be solvable in P-time. In this article we present a practically useful case of UET solvable in P-time: We show that if the task graph is given in levels that are 'locally' of in-degree two and of 'width' more than 1.55 times the number of processors (plus 1), then an optimal schedule can be found in P-time. Task graphs which represent algebraic computations fall ordinarily in this category. Our algorithm is based on a limited look-ahead technique which allows us to use it in an on-line fashion. In the appendix we give two short NP-completeness proofs which suggest that both 'width' and 'degree' restrictions are needed to get a polynomially solvable subcase. en
heal.publisher OXFORD UNIV PRESS en
heal.journalName Computer Journal en
dc.identifier.doi 10.1093/comjnl/44.3.163 en
dc.identifier.isi ISI:000169766600003 en
dc.identifier.volume 44 en
dc.identifier.issue 3 en
dc.identifier.spage 163 en
dc.identifier.epage 173 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής