dc.contributor.author |
Papakonstantopoulos, GD |
en |
dc.contributor.author |
Androutsopoulos, GP |
en |
dc.contributor.author |
Philippopoulos, CJ |
en |
dc.date.accessioned |
2014-03-01T01:17:00Z |
|
dc.date.available |
2014-03-01T01:17:00Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0009-2509 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14313 |
|
dc.subject |
Differential Equation |
en |
dc.subject |
Kinetic Model |
en |
dc.subject |
Kinetics |
en |
dc.subject |
Numerical Solution |
en |
dc.subject |
Parametric Study |
en |
dc.subject |
Reaction Rate |
en |
dc.subject |
First Order |
en |
dc.subject |
Second Order |
en |
dc.subject.classification |
Engineering, Chemical |
en |
dc.subject.other |
Catalyst selectivity |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Pelletizing |
en |
dc.subject.other |
Porous materials |
en |
dc.subject.other |
Pellets |
en |
dc.subject.other |
Catalysts |
en |
dc.subject.other |
catalyst |
en |
dc.subject.other |
chemical reaction |
en |
dc.subject.other |
kinetics |
en |
dc.title |
Reaction selectivity in a porous catalyst pellet: Analysis of a kinetic model of two parallel, first order, irreversible reactions with a second order inhibition kinetic term in one of them |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0009-2509(01)00199-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0009-2509(01)00199-3 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
This work deals with the analysis of a kinetic model of two parallel, first order, irreversible reactions that include a second order inhibition term in one of them (i.e. A + b(1)B --> Ck1CA/(1+KCA)2,A + b(2)B --> D-k2CA). The continuity differential equation taking account of isothermal diffusion and reaction of A in a spherical catalyst pellet, was formulated. The numerical solution of the latter equation yielded useful results related to the variation of the effectiveness factor (eta) and the selectivity (S) (S = [k(1)C(A)/(1 + KCA)(2)]/[k(2)C(A) + k(1)C(A)/(1 + KCA)(2)]) for the desired reaction (i.e A + b(1)B --> C) versus the Thiele Modulus (phi). Parametric studies involved the investigation of the effects of k = k(2)/k(1), the ratio of the intrinsic specific reaction rate constants, and the inhibition strength factor (i.e. KCA), upon the eta vs. phi and the S vs. phi curves. The eta vs. phi curve turns faster towards lower eta values for high k values, especially at high inhibition KCA values. Intraparticle diffusion imparts a pronounced effect upon selectivity, a fact contrasting markedly from the standard case of two parallel reactions without inhibition, where selectivity is independent of diffusion resistance. The S vs. phi curves show a step increase occurring at specified values of phi that increase at high inhibition strengths. The relative selectivity S '(= S/S-0) vs. phi curves (where S-0 is the selectivity for reactant concentration at catalyst surface) increases monotonically with k and KCA values and go through a maximum for high phi values. (C) 2001 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Chemical Engineering Science |
en |
dc.identifier.doi |
10.1016/S0009-2509(01)00199-3 |
en |
dc.identifier.isi |
ISI:000171243400016 |
en |
dc.identifier.volume |
56 |
en |
dc.identifier.issue |
18 |
en |
dc.identifier.spage |
5413 |
en |
dc.identifier.epage |
5417 |
en |