dc.contributor.author |
Fragouli, C |
en |
dc.contributor.author |
Seshadri, N |
en |
dc.contributor.author |
Turin, W |
en |
dc.date.accessioned |
2014-03-01T01:17:00Z |
|
dc.date.available |
2014-03-01T01:17:00Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
15308669 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14319 |
|
dc.subject |
Channel equalization |
en |
dc.subject |
Forward-backward algorithm |
en |
dc.subject |
M-algorithm |
en |
dc.title |
Reduced-trellis equalization using the M-BCJR algorithm |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/wcm.23 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/wcm.23 |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
The complexity of channel equalization using the BCJR algorithm [Bahl LR et al. IEEE Transactions on Info. Theory 1974; 20: 284-287] grows exponentially with the channel memory. The M-BCJR algorithm [Franz V, Anderson J. IEEE J. Selected Areas Comm. 1998; 16(2): 186-195] provides a method for reduced-trellis channel equalization, but its performance varies significantly with the distribution of a channel energy to its taps. This paper proposes a variation of the M-algorithm, based on the implementation of the BCJR algorithm in the logarithmic domain, which can offer robust performance. Designer choices such as the decision delay, maximum and minimum phase transformation, and selection of states are discussed. Simulation results demonstrate the effect of different parameters on the proposed algorithm's performance. Copyright © 2001 John Wiley & Sons, Ltd. |
en |
heal.journalName |
Wireless Communications and Mobile Computing |
en |
dc.identifier.doi |
10.1002/wcm.23 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
397 |
en |
dc.identifier.epage |
405 |
en |