Routing and path multicoloring

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Nomikos, C en
dc.contributor.author Pagourtzis, A en
dc.contributor.author Zachos, S en
dc.date.accessioned 2014-03-01T01:17:01Z
dc.date.available 2014-03-01T01:17:01Z
dc.date.issued 2001 en
dc.identifier.issn 0020-0190 en
dc.identifier.uri http://hdl.handle.net/123456789/14334
dc.subject Algorithms en
dc.subject All-optical networks en
dc.subject Parallel fiber links en
dc.subject Path coloring en
dc.subject Routing en
dc.subject.classification Computer Science, Information Systems en
dc.subject.other Algorithms en
dc.subject.other Approximation theory en
dc.subject.other Bandwidth en
dc.subject.other Color image processing en
dc.subject.other Edge detection en
dc.subject.other Graph theory en
dc.subject.other Mathematical transformations en
dc.subject.other Optical links en
dc.subject.other Parallel processing systems en
dc.subject.other Routers en
dc.subject.other Path multicoloring en
dc.subject.other Optical communication en
dc.title Routing and path multicoloring en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0020-0190(01)00167-3 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0020-0190(01)00167-3 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract In optical networks it is important to make an optimal use of the available bandwidth. Given a set of requests the goal is to satisfy them by using a minimum number of wavelengths. We introduce a variation to this well known problem, by allowing multiple parallel links, in order to be able to satisfy any set of requests even if the available bandwidth is insufficient. In this new approach the goal is to use a minimum number of active links and thus reduce network pricing. In graph-theoretic terms, given a graph, a list of pairs of vertices, and a number of available colors, the goal is to route paths with the given pairs of vertices as endpoints and to find a color assignment to paths that minimizes color collisions over all possible routings and colorings. We present efficient algorithms for simple network topologies. For chains our solutions are optimal; for stars and rings - where it is NP-hard to solve the problem optimally - our solutions are approximate within a factor two of the optimal solution. The key technique involves transformation to edge coloring of bipartite graphs. For rings we also present a 2-approximation algorithm, for a variation of the problem, in which the routing is already prescribed. (C) 2001 Elsevier Science B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Information Processing Letters en
dc.identifier.doi 10.1016/S0020-0190(01)00167-3 en
dc.identifier.isi ISI:000171737000006 en
dc.identifier.volume 80 en
dc.identifier.issue 5 en
dc.identifier.spage 249 en
dc.identifier.epage 256 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record