dc.contributor.author |
Vardoulakis, I |
en |
dc.contributor.author |
Papanastasiou, P |
en |
dc.contributor.author |
Stavropoulou, M |
en |
dc.date.accessioned |
2014-03-01T01:17:01Z |
|
dc.date.available |
2014-03-01T01:17:01Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0169-3913 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14336 |
|
dc.subject |
Axial flow |
en |
dc.subject |
Brinkman's law |
en |
dc.subject |
Hydrodynamic dispersion |
en |
dc.subject |
Sand erosion |
en |
dc.subject |
Sand production |
en |
dc.subject.classification |
Engineering, Chemical |
en |
dc.subject.other |
Diffusion |
en |
dc.subject.other |
Erosion |
en |
dc.subject.other |
Heat convection |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Sand erosion |
en |
dc.subject.other |
Axial flow |
en |
dc.subject.other |
axial flow |
en |
dc.subject.other |
erosion |
en |
dc.subject.other |
hydrodynamics |
en |
dc.subject.other |
mathematical modeling |
en |
dc.subject.other |
sand |
en |
dc.subject.other |
erosion |
en |
dc.subject.other |
flow modeling |
en |
dc.subject.other |
hydrodynamics |
en |
dc.subject.other |
sand |
en |
dc.title |
Sand erosion in axial flow conditions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1012035031463 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1012035031463 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
A mathematical model of sand erosion in axial flow conditions is presented. The basic mass balance equations and sand erosion constitutive equation were given in Vardoulakis et al. (1996). As opposed to reference Vardoulakis et al. (1996), we consider here the extreme case where convection is null and hydrodynamic dispersion dominates. In addition, Brinkman's extension of Darcy's law is adopted to account for a smooth transition between channel flow and Darcian flow. The set of governing PDE's is presented in dimensionless form and is solved numerically. In concordance with the basic constitutive equation for erosion kinetics, the analysis shows that erosion progresses in time as a 'front' of high transport concentration. This result is justified by the highly non-linear character of the erosion source term which dominates in the diffusion-like governing equation. |
en |
heal.publisher |
KLUWER ACADEMIC PUBL |
en |
heal.journalName |
Transport in Porous Media |
en |
dc.identifier.doi |
10.1023/A:1012035031463 |
en |
dc.identifier.isi |
ISI:000171676100004 |
en |
dc.identifier.volume |
45 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
267 |
en |
dc.identifier.epage |
281 |
en |