HEAL DSpace

Self-dual codes over GF(7) and orthogonal designs

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgiou, S en
dc.contributor.author Koukouvinos, C en
dc.date.accessioned 2014-03-01T01:17:05Z
dc.date.available 2014-03-01T01:17:05Z
dc.date.issued 2001 en
dc.identifier.issn 0315-3681 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14349
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0039569533&partnerID=40&md5=4af55f909b001d960b5c57c7eb9819e7 en
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0039569533&partnerID=40&md5=4af55f909b001d960b5c57c7eb9819e7 en
dc.subject Construction en
dc.subject Orthogonal designs en
dc.subject Self-dual codes en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Statistics & Probability en
dc.title Self-dual codes over GF(7) and orthogonal designs en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2001 en
heal.abstract Self-dual codes and orthogonal designs have been studied for a long time as separate research areas. In this paper we show a strong relationship between them and orthogonal designs. The structure of orthogonal designs is such as to allow us a much faster and more systematic search for self-dual codes over GF(7). We describe some of the known methods for constructing self-dual codes and we develop a new construction method which is based on the orthogonal designs. Applying our method we are able to construct some new self-dual codes over GF(7). In particular we constructed two [16, 8, 7] and a [24, 12, 9] self-dual codes with new weight enumerators. en
heal.publisher UTIL MATH PUBL INC en
heal.journalName Utilitas Mathematica en
dc.identifier.isi ISI:000172136800005 en
dc.identifier.volume 60 en
dc.identifier.spage 79 en
dc.identifier.epage 89 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής