dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:17:05Z |
|
dc.date.available |
2014-03-01T01:17:05Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0009725X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14350 |
|
dc.subject |
anticoercive function |
en |
dc.subject |
Clarke subdifferential |
en |
dc.subject |
coercive function |
en |
dc.subject |
critical point |
en |
dc.subject |
eigenfunction |
en |
dc.subject |
eigenvalue |
en |
dc.subject |
Hemivariational inequality at resonance |
en |
dc.subject |
locally Lipschitz functional |
en |
dc.subject |
mountain pass theorem |
en |
dc.subject |
nonsmooth Palais-Smale condition |
en |
dc.subject |
saddle point theorem |
en |
dc.title |
Semilinear hemivariational inequalities at resonance |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02844978 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02844978 |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
In this paper we examine a semilinear hemivariational inequality at resonance in the first eigenvalue λ1 of (-Δ,H01(Z)). We prove two existence theorems for such problems. Our approach is variational and is based on the nonsmooth critical point theory of Chang, which uses the subdifferential calculus of Clarke for locally Lipschitz functions. © 2001 Springer. |
en |
heal.journalName |
Rendiconti del Circolo Matematico di Palermo |
en |
dc.identifier.doi |
10.1007/BF02844978 |
en |
dc.identifier.volume |
50 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
217 |
en |
dc.identifier.epage |
238 |
en |