dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:17:07Z |
|
dc.date.available |
2014-03-01T01:17:07Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0308-2105 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14361 |
|
dc.subject |
Multiple Solution |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
CRITICAL-POINT THEORY |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.title |
Solutions and multiple solutions for quasilinear hemivariational inequalities at resonance |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1017/S0308210500001281 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S0308210500001281 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
In this paper we consider quasilinear hemivariational inequalities at resonance. We obtain existence theorems using Landesman-Lazer-type conditions and multiplicity theorems for problems with strong resonance at infinity. Our method of proof is based on the non-smooth critical point theory for locally Lipschitz functions and on a generalized version of the Ekeland variational principle. © 2001 The Royal Society of Edinburgh. |
en |
heal.publisher |
ROYAL SOC EDINBURGH |
en |
heal.journalName |
Royal Society of Edinburgh - Proceedings A |
en |
dc.identifier.doi |
10.1017/S0308210500001281 |
en |
dc.identifier.isi |
ISI:000172094000006 |
en |
dc.identifier.volume |
131 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
1091 |
en |
dc.identifier.epage |
1111 |
en |