dc.contributor.author |
Tzanetis, DE |
en |
dc.contributor.author |
Vlamos, PM |
en |
dc.date.accessioned |
2014-03-01T01:17:07Z |
|
dc.date.available |
2014-03-01T01:17:07Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0013-0915 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14362 |
|
dc.subject |
Blow-up |
en |
dc.subject |
Local and global existence |
en |
dc.subject |
Non-local parabolic equations |
en |
dc.subject |
Stability |
en |
dc.subject |
Stationary solutions |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
THERMISTOR PROBLEM |
en |
dc.title |
Some interesting special cases of a non-local problem modelling ohmic heating with variable thermal conductivity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1017/S0013091500000109 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S0013091500000109 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
The non-local equation u(t) = (u(3)u(x))x + lambdaf(u)/(integral (1/)(-1)f(u)dx)(2) is considered, subject to some initial and Dirichlet boundary conditions. Here f is taken to be either exp(-s(4)) or H(1 - s) with H the Heaviside function, which are both decreasing. It is found that there exists a critical value lambda* = 2, so that for lambda > lambda* there is no stationary solution and u 'blows up' (in some sense). If 0 < lambda < lambda*, there is a unique stationary solution which is asymptotically stable and the solution of the IBVP is global in time. |
en |
heal.publisher |
CAMBRIDGE UNIV PRESS |
en |
heal.journalName |
Proceedings of the Edinburgh Mathematical Society |
en |
dc.identifier.doi |
10.1017/S0013091500000109 |
en |
dc.identifier.isi |
ISI:000171880300009 |
en |
dc.identifier.volume |
44 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
585 |
en |
dc.identifier.epage |
595 |
en |