HEAL DSpace

The analog equation method for large deflection analysis of membranes. A boundary-only solution

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Katsikadelis, JT en
dc.contributor.author Nerantzaki, MS en
dc.contributor.author Tsiatas, GC en
dc.date.accessioned 2014-03-01T01:17:13Z
dc.date.available 2014-03-01T01:17:13Z
dc.date.issued 2001 en
dc.identifier.issn 0178-7675 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14398
dc.subject Boundary Condition en
dc.subject Integral Representation en
dc.subject Nonlinear Analysis en
dc.subject Nonlinear Equation en
dc.subject Nonlinear Response en
dc.subject Partial Differential Equation en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Boundary conditions en
dc.subject.other Deflection (structures) en
dc.subject.other Elasticity en
dc.subject.other Integral equations en
dc.subject.other Membranes en
dc.subject.other Nonlinear equations en
dc.subject.other Poisson equation en
dc.subject.other Stresses en
dc.subject.other Structural analysis en
dc.subject.other Traction (friction) en
dc.subject.other Analog equation method en
dc.subject.other Boundary only solution en
dc.subject.other Membranes deflection analysis en
dc.subject.other Boundary element method en
dc.title The analog equation method for large deflection analysis of membranes. A boundary-only solution en
heal.type journalArticle en
heal.identifier.primary 10.1007/s004660100263 en
heal.identifier.secondary http://dx.doi.org/10.1007/s004660100263 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract In this paper the analog equation method (AEM) is applied to nonlinear analysis of elastic membranes with arbitrary shape. In this case the transverse deflections influence the inplane stress resultants and the three partial differential equations governing the response of the membrane are coupled and nonlinear. The present formulation, being in terms of the three displacements components, permits the application of geometrical inplane boundary conditions. The membrane is prestressed either by prescribed boundary displacements or by tractions. Using the concept of the analog equation the three coupled nonlinear equations are replaced by three uncoupled Poisson's equations with fictitious sources under the same boundary conditions. Subsequently, the fictitious sources are established using a procedure based on BEM and the displacement components as well as the stress resultants are evaluated from their integral representations at any point of the membrane. Several membranes are analyzed which illustrate the method and demonstrate its efficiency and accuracy. Moreover, useful conclusions are drawn for the nonlinear response of the membranes. The method has all the advantages of the pure BEM, since the discretization and integration is limited only to the boundary. en
heal.publisher SPRINGER-VERLAG en
heal.journalName Computational Mechanics en
dc.identifier.doi 10.1007/s004660100263 en
dc.identifier.isi ISI:000171239400007 en
dc.identifier.volume 27 en
dc.identifier.issue 6 en
dc.identifier.spage 513 en
dc.identifier.epage 523 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record