HEAL DSpace

The far-field equations in linear elasticity - An inversion scheme

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gintides, D en
dc.contributor.author Kiriaki, K en
dc.date.accessioned 2014-03-01T01:17:15Z
dc.date.available 2014-03-01T01:17:15Z
dc.date.issued 2001 en
dc.identifier.issn 0044-2267 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14415
dc.subject Linear Elasticity en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mechanics en
dc.subject.other RESONANCE REGION en
dc.subject.other SCATTERING en
dc.subject.other WAVES en
dc.title The far-field equations in linear elasticity - An inversion scheme en
heal.type journalArticle en
heal.identifier.primary 10.1002/1521-4001(200105)81:5<305::AID-ZAMM305>3.0.CO;2-T en
heal.identifier.secondary http://dx.doi.org/10.1002/1521-4001(200105)81:5<305::AID-ZAMM305>3.0.CO;2-T en
heal.language English en
heal.publicationDate 2001 en
heal.abstract In this paper the far-field equations in linear elasticity for the rigid body and the cavity are considered. The direct scattering problem is formulated as a dyadic one. This imbedding of the vector problem for the displacement field into a dyadic field is enforced by the dyadic nature of the free space Green's function. Assuming that the incident field is produced by a superposition of plane dyadic incident waves it is proved that the scattered field is also expressed as the superposition of the corresponding scattered fields. A pair of integral equations of the first kind which hold independently of the boundary conditions are constructed in the far-field region. The properties of the Herglotz functions are used to derive solvability conditions and to build approximate far-field equations. Having this theoretical framework, approximate far-field equations are derived for a specific incidence which generates as far-field patterns simple known functions. An inversion scheme is proposed based on the unboundedness for the solutions of these approximate ""far-field equations"" and the support of the body is found by noting that the solutions of the integral equations are not bounded as the point of the location of the fundamental solution approaches the boundary of the scatterer from interioir points. It is also pointed that it is sufficient to recover the support of the body if only one approximate ""far-field equation"" is used. The case of the rigid sphere is considered to illuminate the unboundedness property on the boundary. en
heal.publisher WILEY-V C H VERLAG GMBH en
heal.journalName ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik en
dc.identifier.doi 10.1002/1521-4001(200105)81:5<305::AID-ZAMM305>3.0.CO;2-T en
dc.identifier.isi ISI:000168641700002 en
dc.identifier.volume 81 en
dc.identifier.issue 5 en
dc.identifier.spage 305 en
dc.identifier.epage 316 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής