dc.contributor.author |
Potamianos, A |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T01:17:17Z |
|
dc.date.available |
2014-03-01T01:17:17Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
10636676 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14433 |
|
dc.subject |
Speech analysis |
en |
dc.subject |
Speech processing |
en |
dc.subject |
Speech recognition |
en |
dc.subject |
Time-frequency analysis |
en |
dc.subject.other |
Bandpass filters |
en |
dc.subject.other |
Markov processes |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Speech analysis |
en |
dc.subject.other |
Automatic speech recognition |
en |
dc.subject.other |
Time-frequency distributions |
en |
dc.subject.other |
Speech recognition |
en |
dc.title |
Time-frequency distributions for automatic speech recognition |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/89.905994 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/89.905994 |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
The use of general time-frequency distributions as features for automatic speech recognition (ASR) is discussed in the context of hidden Markov classifiers. Short-time averages of quadratic operators, e.g., energy spectrum, generalized first spectral moments, and short-time averages of the instantaneous frequency, are compared to the standard front end features, and applied to ASR. Theoretical and experimental results indicate a close relationship among these feature sets. |
en |
heal.journalName |
IEEE Transactions on Speech and Audio Processing |
en |
dc.identifier.doi |
10.1109/89.905994 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
196 |
en |
dc.identifier.epage |
200 |
en |