HEAL DSpace

A boundary integral equation method for oblique water-wave scattering by cylinders governed by the modified Helmholtz equation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Politis, CG en
dc.contributor.author Papalexandris, MV en
dc.contributor.author Athanassoulis, GA en
dc.date.accessioned 2014-03-01T01:17:20Z
dc.date.available 2014-03-01T01:17:20Z
dc.date.issued 2002 en
dc.identifier.issn 0141-1187 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14465
dc.subject Boundary integral equation en
dc.subject Fluid-structure interaction en
dc.subject Free-surface hydrodynamics en
dc.subject Modified Helmholtz equation en
dc.subject Oblique seas en
dc.subject Water waves en
dc.subject.classification Engineering, Ocean en
dc.subject.classification Oceanography en
dc.subject.other Algorithms en
dc.subject.other Boundary value problems en
dc.subject.other Degrees of freedom (mechanics) en
dc.subject.other Diffraction en
dc.subject.other Green's function en
dc.subject.other Integral equations en
dc.subject.other Laplace transforms en
dc.subject.other Fluid motions en
dc.subject.other Water wave effects en
dc.subject.other cylinder en
dc.subject.other Green function en
dc.subject.other mathematical method en
dc.subject.other water wave en
dc.subject.other wave-structure interaction en
dc.subject.other boundary integral method en
dc.subject.other cylinder en
dc.subject.other Green function en
dc.subject.other Helmholtz equation en
dc.subject.other water wave en
dc.subject.other wave-structure interaction en
dc.title A boundary integral equation method for oblique water-wave scattering by cylinders governed by the modified Helmholtz equation en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0141-1187(02)00047-0 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0141-1187(02)00047-0 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract In this work we are concerned with the interaction of a train of regular deep-water waves with an infinitely long, surface-piercing or submerged cylinder of arbitrary shape (diffraction problem). We are also concerned with the complementary problem of fluid motion induced by the forced oscillations of the cylinder in each of its degrees of freedom: heave, sway, and roll (generalized radiation problem). The amplitude of the oscillation is assumed to vary sinusoidally along the cylinder axis. The problem is solved via the Boundary Integral Equation method by using an appropriate Green function and Green's second identity. According to this method, the initial boundary value problem is formulated as a Fredholm integral equation of the second kind posed on the body boundary. The efficiency of the method depends on the accuracy with which the numerical evaluation of the Green function is performed. For this purpose we employ two alternative representations of the Green function, in conjunction with fast and accurate algorithms for the numerical integration of highly oscillatory functions. Numerical results are presented for a floating semi-circle, a floating inverse T, a submerged circle, and a submerged rectangular cylinder. The efficiency and accuracy of the proposed algorithm is tested with existing results, as well as results for the limiting case of the Laplace equation for which much information is available. (C) 2003 Elsevier Science Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Applied Ocean Research en
dc.identifier.doi 10.1016/S0141-1187(02)00047-0 en
dc.identifier.isi ISI:000181877700003 en
dc.identifier.volume 24 en
dc.identifier.issue 4 en
dc.identifier.spage 215 en
dc.identifier.epage 233 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής