dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Arvanitakis, AD |
en |
dc.date.accessioned |
2014-03-01T01:17:20Z |
|
dc.date.available |
2014-03-01T01:17:20Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0039-3223 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14467 |
|
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
MILUTIN |
en |
dc.title |
A characterization of regular averaging operators and its consequences |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.4064/sm151-3-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.4064/sm151-3-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We present a characterization of continuous surjections, between compact metric spaces, admitting a regular averaging operator. Among its consequences, concrete continuous surjections from the Cantor set C to [0, 1] admitting regular averaging operators are exhibited. Moreover we show that the set of this type of continuous surjections from C to [0, 1] is dense in the supremum norm in the set of all continuous surjections. The non-metrizable case is also investigated. As a consequence, we obtain a new characterization of Eberlein compact sets. |
en |
heal.publisher |
POLISH ACAD SCIENCES INST MATHEMATICS |
en |
heal.journalName |
Studia Mathematica |
en |
dc.identifier.doi |
10.4064/sm151-3-2 |
en |
dc.identifier.isi |
ISI:000179157000002 |
en |
dc.identifier.volume |
151 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
207 |
en |
dc.identifier.epage |
226 |
en |