dc.contributor.author |
Aslam Noor, M |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:17:20Z |
|
dc.date.available |
2014-03-01T01:17:20Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0022-247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14468 |
|
dc.subject |
Convergence |
en |
dc.subject |
Fixed point |
en |
dc.subject |
Projection method |
en |
dc.subject |
Variational inequalities |
en |
dc.subject |
Wiener-Hopf equations |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
WIENER-HOPF EQUATIONS |
en |
dc.title |
A class of projection methods for general variational inequalities |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1006/jmaa.2001.7896 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1006/jmaa.2001.7896 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
In this paper, we consider and analyze a new class of projection methods for solving pseudomonotone general variational inequalities using the Wiener-Hopf equations technique. The modified methods converge for pseudomonotone operators. Our proof of convergence is very simple as compared with other methods. The proposed methods include several known methods as special cases. (C) 2002 Elsevier Science (USA). |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Mathematical Analysis and Applications |
en |
dc.identifier.doi |
10.1006/jmaa.2001.7896 |
en |
dc.identifier.isi |
ISI:000174952900021 |
en |
dc.identifier.volume |
268 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
334 |
en |
dc.identifier.epage |
343 |
en |