dc.contributor.author |
Gargalakos, MA |
en |
dc.contributor.author |
Makri, RJ |
en |
dc.contributor.author |
Uzunoglu, NK |
en |
dc.date.accessioned |
2014-03-01T01:17:21Z |
|
dc.date.available |
2014-03-01T01:17:21Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0272-6343 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14477 |
|
dc.subject |
Finite dimensions |
en |
dc.subject |
Harmonic analysis |
en |
dc.subject |
MMIC |
en |
dc.subject |
Nonlinear |
en |
dc.subject |
Wiener-Volterra method |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Electric fields |
en |
dc.subject.other |
Electromagnetic wave polarization |
en |
dc.subject.other |
Frequencies |
en |
dc.subject.other |
Green's function |
en |
dc.subject.other |
Harmonic analysis |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Integrated circuit layout |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear network analysis |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Finite dimensions |
en |
dc.subject.other |
Intermediate frequency |
en |
dc.subject.other |
Kernel |
en |
dc.subject.other |
Linear dielectric region |
en |
dc.subject.other |
Nonlinear response |
en |
dc.subject.other |
Wiener-Volterra method |
en |
dc.subject.other |
Monolithic microwave integrated circuits |
en |
dc.title |
A generalized three-dimensional nonlinear analysis of MMIC structures |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/02726340252886447 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/02726340252886447 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
This article examines the design and modeling of nonlinear microwave monolithic integrated circuits (MMICs). In order to examine the nonlinear response of a typical MMIC geometry, a nonlinear volume with finite dimensions perturbs the linear dielectric region of the geometry. Assuming a "weak" nonlinear condition, the Wiener-Volterra method is applied and the unknown excess polarization field inside the nonlinear region is expressed. Focusing the analysis at the intermediate frequency (IF frequency), the nonlinear term of the unknown electric field is derived by solving the basic integral equation for omega = omega(1) - omega(2). The kernel of this integral mainly consists of the independent solutions of the relevant linear problem at omega(1), omega(2) frequencies. Finally, a few simple geometries are examined and the relevant numerical results are computed and presented. |
en |
heal.publisher |
TAYLOR & FRANCIS INC |
en |
heal.journalName |
Electromagnetics |
en |
dc.identifier.doi |
10.1080/02726340252886447 |
en |
dc.identifier.isi |
ISI:000175077900001 |
en |
dc.identifier.volume |
22 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
161 |
en |
dc.identifier.epage |
176 |
en |