dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:17:22Z |
|
dc.date.available |
2014-03-01T01:17:22Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
1370-1444 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14490 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0012542880&partnerID=40&md5=3d94f2044eaa590a0a9adacc6e075779 |
en |
dc.subject |
Clarke subdifferential |
en |
dc.subject |
Critical point |
en |
dc.subject |
First eigenvalue |
en |
dc.subject |
Generalized variational derivative |
en |
dc.subject |
Locally Lipachitz functional |
en |
dc.subject |
Mountain pass theorem |
en |
dc.subject |
Nonsmooth Palais-Sraale condition |
en |
dc.subject |
Scalar p-Laplacian |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.title |
A multiplicity result for nonlinear second order periodic equations with nonsmooth potential |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
In this paper we study a quasilinear scalar periodic problem with a non-differentiable potential function. We only assume that, as a function of the state variable, the potential is locally Lipschitz. So the gradient is replaced by the generalized subdifferential in the sense of Clarke. Using a variational approach, based on the nonsmooth critical point theory of Chang (see [1]), we prove the existence of at least three distinct solutions for the periodic problem. An example is also presented, illustrating that our hypotheses on the potential function are realistic. |
en |
heal.publisher |
BELGIAN MATHEMATICAL SOC TRIOMPHE |
en |
heal.journalName |
Bulletin of the Belgian Mathematical Society - Simon Stevin |
en |
dc.identifier.isi |
ISI:000183864600008 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
245 |
en |
dc.identifier.epage |
258 |
en |