HEAL DSpace

A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sarimveis, H en
dc.contributor.author Alexandridis, A en
dc.contributor.author Mazarakis, S en
dc.contributor.author Bafas, G en
dc.date.accessioned 2014-03-01T01:17:22Z
dc.date.available 2014-03-01T01:17:22Z
dc.date.issued 2002 en
dc.identifier.issn 15707946 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14493
dc.subject Chemical Reactors en
dc.subject Dynamic Model en
dc.subject Genetic Algorithm en
dc.subject Pulp and Paper Industry en
dc.subject Radial Basis Function en
dc.subject rbf neural network en
dc.subject Radial Basis Function Neural Network en
dc.title A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms en
heal.type journalArticle en
heal.identifier.primary 10.1016/S1570-7946(02)80186-9 en
heal.identifier.secondary http://dx.doi.org/10.1016/S1570-7946(02)80186-9 en
heal.publicationDate 2002 en
heal.abstract A new algorithm for extracting valuable information from industrial data is presented in this paper. The proposed methodology produces dynamic Radial Basis Function (RBF) neural network models and uses Genetic Algorithms (GAs) to auto-configure the structure of the networks. The effectiveness of the method is illustrated through the development of a dynamical model for a chemical reactor, used in pulp and paper industry. © 2002 Elsevier B.V. All rights reserved. en
heal.journalName Computer Aided Chemical Engineering en
dc.identifier.doi 10.1016/S1570-7946(02)80186-9 en
dc.identifier.volume 10 en
dc.identifier.issue C en
dc.identifier.spage 949 en
dc.identifier.epage 954 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής