HEAL DSpace

A synergetic neural network-genetic scheme for optimal transformer construction

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, ND en
dc.contributor.author Doulamis, AD en
dc.contributor.author Georgilakis, PS en
dc.contributor.author Kollias, SD en
dc.contributor.author Hatziargyriou, ND en
dc.date.accessioned 2014-03-01T01:17:24Z
dc.date.available 2014-03-01T01:17:24Z
dc.date.issued 2002 en
dc.identifier.issn 1069-2509 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14510
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0036143207&partnerID=40&md5=5844c1c09fe02776a2bddbe57cfb27a7 en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.other Eddy currents en
dc.subject.other Electric losses en
dc.subject.other Electric transformers en
dc.subject.other Genetic algorithms en
dc.subject.other Hysteresis en
dc.subject.other Iron losses en
dc.subject.other Neural networks en
dc.title A synergetic neural network-genetic scheme for optimal transformer construction en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2002 en
heal.abstract In this paper, a combined neural network and an evolutionary programming scheme is proposed to improve the quality of wound core distribution transformers in an industrial environment by exploiting information derived from both the construction and transformer design phase. In particular, the neural network architecture is responsible for predicting transformer iron losses prior to their assembly, based on several actual core measurements, transformer design parameters and the specific core assembling. A genetic algorithm is applied to estimate the optimal core arrangement, (i.e. the way of core assembling) that yields a set of three-phase transformers of minimal iron losses. The minimization is performed by exploiting information derived from the neural network model resulting in a synergetic neural network-genetic algorithm Scheme. After the transformer construction, the prediction accuracy of the neural network model is evaluated. If accuracy is poor, a weight adaptation algorithm is applied to improve the prediction performance. For the weight updating, bath the current and the previous network knowledge are taken into account. Application of the proposed neural network-genetic algorithm scheme to our industrial environment indicates a significant reduction in the variation between the actual and the designed transformer iron losses. This further leads to a reduction of the production cost since a smaller safety margin can be used for the transformer design. en
heal.publisher IOS PRESS en
heal.journalName Integrated Computer-Aided Engineering en
dc.identifier.isi ISI:000173738400003 en
dc.identifier.volume 9 en
dc.identifier.issue 1 en
dc.identifier.spage 37 en
dc.identifier.epage 56 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής