dc.contributor.author |
Evangelaras, H |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.contributor.author |
Mantas, P |
en |
dc.date.accessioned |
2014-03-01T01:17:24Z |
|
dc.date.available |
2014-03-01T01:17:24Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0167-7152 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14514 |
|
dc.subject |
A-optimality |
en |
dc.subject |
D-optimality |
en |
dc.subject |
Fractional factorial |
en |
dc.subject |
Hadamard matrix |
en |
dc.subject |
Resolution III design |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
OPTIMUM WEIGHING DESIGNS |
en |
dc.subject.other |
CONSTRUCTION |
en |
dc.title |
A unified approach in addition or deletion of two level factorial designs |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0167-7152(02)00111-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0167-7152(02)00111-6 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Suppose it is desired to have an optimal resolution III fraction of a 2p factorial in n runs where n ≡ 1 (mod4) or n ≡ 3 (mod 4). If n ≡ 1 (mod 4), we have to decide if we should add a run in a n × p submatrix of a Hadamard matrix of order n, say Hn or, alternatively, if we should delete three runs from a (n + 4) × p submatrix of a Hadamard matrix of order n + 4, say Hn+4, in an optimal manner, respectively. Similarly, when n ≡ 3 (mod 4), we have to decide between optimally adding three more runs to a n × p submatrix of Hn or optimally deleting a single run from a (n + 4) × p submatrix of Hn+4. The question to be studied is whether both strategies give designs that are equally efficient in terms of a well defined optimality criterion. We show that, in both cases, for p = 3 both strategies give equally efficient designs under the D- or the A-optimality criterion. When n ≡ 1 (mod 4) and p > 3, both criteria show that the ""addition"" design is always better than the ""deletion"" design. However, when n ≡ 3 (mod 4) and p > 3, the choice of the most efficient design varies as p enlarges. © 2002 Published by Elsevier Science B.V. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Statistics and Probability Letters |
en |
dc.identifier.doi |
10.1016/S0167-7152(02)00111-6 |
en |
dc.identifier.isi |
ISI:000177915600002 |
en |
dc.identifier.volume |
59 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
125 |
en |
dc.identifier.epage |
133 |
en |