dc.contributor.author |
Koukouvinos, C |
en |
dc.contributor.author |
Mitrouli, M |
en |
dc.contributor.author |
Seberry, J |
en |
dc.date.accessioned |
2014-03-01T01:17:27Z |
|
dc.date.available |
2014-03-01T01:17:27Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0308-1087 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14539 |
|
dc.subject |
Complete pivoting |
en |
dc.subject |
Gaussian elimination |
en |
dc.subject |
Pivot size |
en |
dc.subject |
Sylvester Hadamard matrices |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
GAUSSIAN-ELIMINATION |
en |
dc.subject.other |
GROWTH |
en |
dc.title |
An infinite family of Hadamard matrices with fourth last pivot n/2 |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/03081080290019568 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/03081080290019568 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We show that the equivalence class of Sylvester Hadamard matrices give an infinite family of Hadamard matrices in which the fourth last pivot is n/2. Analytical examples of completely pivoted Hadamard matrices of order n having as fourth last pivot n/2 are given for n = 16 and 32. In each case this distinguished case with the fourth pivot n/2 arose in the equivalence class of the Sylvester Hadamard matrices. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
Linear and Multilinear Algebra |
en |
dc.identifier.doi |
10.1080/03081080290019568 |
en |
dc.identifier.isi |
ISI:000174911500008 |
en |
dc.identifier.volume |
50 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
167 |
en |
dc.identifier.epage |
173 |
en |