dc.contributor.author |
Kyritsi, STh |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:17:27Z |
|
dc.date.available |
2014-03-01T01:17:27Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0022-247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14541 |
|
dc.subject |
Critical point |
en |
dc.subject |
Generalized subdifferential |
en |
dc.subject |
Hemivariational inequality at resonance |
en |
dc.subject |
Locally Lipschitz function |
en |
dc.subject |
Lower solution |
en |
dc.subject |
Nonsmooth C-condition |
en |
dc.subject |
Obstacle |
en |
dc.subject |
p-Laplacian |
en |
dc.subject |
Principal eigenvalue |
en |
dc.subject |
Rayleigh quotient |
en |
dc.subject |
Sobolev space |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
VARIATIONAL-INEQUALITIES |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
POSITIVE SOLUTIONS |
en |
dc.subject.other |
FUNCTIONALS |
en |
dc.subject.other |
PRINCIPLE |
en |
dc.title |
An obstacle problem for nonlinear hemivariational inequalities at resonance |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0022-247X(02)00443-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0022-247X(02)00443-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
In this paper we examine an obstacle problem for a nonlinear hemivariational inequality at resonance driven by the p-Laplacian. Using a variational approach based on the nonsmooth critical point theory for locally Lipschitz functionals defined on a closed, convex set, we prove two existence theorems. In the second theorem we have a pointwise interpretation of the obstacle problem, assuming in addition that the obstacle is also a kind of lower solution for the nonlinear elliptic differential inclusion. (C) 2002 Elsevier Science (USA). All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Mathematical Analysis and Applications |
en |
dc.identifier.doi |
10.1016/S0022-247X(02)00443-2 |
en |
dc.identifier.isi |
ISI:000179972600021 |
en |
dc.identifier.volume |
276 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
292 |
en |
dc.identifier.epage |
313 |
en |