HEAL DSpace

Analyzing the 24-hour blood pressure and heart-rate variability with self-organizing feature maps

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tambouratzis, G en
dc.contributor.author Papakonstantinou, G en
dc.contributor.author Stamatelopoulos, S en
dc.contributor.author Zakopoulos, N en
dc.contributor.author Moulopoulos, S en
dc.date.accessioned 2014-03-01T01:17:33Z
dc.date.available 2014-03-01T01:17:33Z
dc.date.issued 2002 en
dc.identifier.issn 0884-8173 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14554
dc.subject Blood Pressure en
dc.subject Heart Rate Variability en
dc.subject Self Organized Feature Map en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Cardiology en
dc.subject.other Computer aided diagnosis en
dc.subject.other Data reduction en
dc.subject.other Hemodynamics en
dc.subject.other Medical applications en
dc.subject.other Statistical methods en
dc.subject.other Blood pressure variability en
dc.subject.other Heart rate variability en
dc.subject.other Pulse rate measurements en
dc.subject.other Self organizing maps en
dc.title Analyzing the 24-hour blood pressure and heart-rate variability with self-organizing feature maps en
heal.type journalArticle en
heal.identifier.primary 10.1002/int.1003 en
heal.identifier.secondary http://dx.doi.org/10.1002/int.1003 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract In this article, the self-organizing map (SOM) is employed to analyze data describing the 24-hour blood pressure and heart-rate variability of human subjects. The number of observations varies widely over different subjects, and therefore a direct statistical analysis of the data is not feasible without extensive pre-processing and interpolation for normalization purposes. The SOM network operates directly on the data set, without any pre-processing, determines several important data set characteristics, and allows their visualization on a two-dimensional plot. The SOM results are very similar to those obtained using classic statistical methods, indicating the effectiveness of the SOM method in accurately extracting the main characteristics from the data set and displaying them in a readily understandable manner. In this article, the relation is studied between the representation of each subject on the SOM, and his blood pressure and pulse-rate measurements. Finally, some indications are included regarding how the SOM can be used by the medical community to assist in diagnosis tasks. (C) 2002 John Wiley Sons, Inc. en
heal.publisher JOHN WILEY & SONS INC en
heal.journalName International Journal of Intelligent Systems en
dc.identifier.doi 10.1002/int.1003 en
dc.identifier.isi ISI:000173198200004 en
dc.identifier.volume 17 en
dc.identifier.issue 1 en
dc.identifier.spage 63 en
dc.identifier.epage 76 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής