dc.contributor.author |
Wang, X |
en |
dc.contributor.author |
Hatziargyriou, N |
en |
dc.contributor.author |
Tsoukalas, L |
en |
dc.date.accessioned |
2014-03-01T01:17:34Z |
|
dc.date.available |
2014-03-01T01:17:34Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14566 |
|
dc.subject |
Load Forecasting |
en |
dc.subject |
Power System |
en |
dc.title |
A new methodology for nodal load forecasting in deregulated power systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/39.999661 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/39.999661 |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
A neurofuzzy methodology for online nodal load prediction is introduced that exploits the power of artificial neural networks (ANN) and fuzzy logic. ANNs are used to capture the power consumption patterns specific to a customer, while a fuzzy logic module detects departures from equilibrium (that is, previously established consumption patterns). The fuzzy-logic-based (FL) module (called PROTREN) performs signal trend identification. |
en |
heal.journalName |
IEEE Power & Energy Magazine |
en |
dc.identifier.doi |
10.1109/39.999661 |
en |