dc.contributor.author |
Stavrakakis, NM |
en |
dc.contributor.author |
Zographopoulos, NB |
en |
dc.date.accessioned |
2014-03-01T01:17:34Z |
|
dc.date.available |
2014-03-01T01:17:34Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0046-5755 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14572 |
|
dc.subject |
Homogeneous Sobolev spaces |
en |
dc.subject |
Indefinite weight |
en |
dc.subject |
Local bifurcation |
en |
dc.subject |
Mean curvature equations |
en |
dc.subject |
Nonlinear spectral theory |
en |
dc.subject |
Unbounded domain |
en |
dc.subject |
Weighted Lp-spaces |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
R(N) |
en |
dc.title |
Bifurcation results for the mean curvature equations defined on all ℝN |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1016286628128 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1016286628128 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We prove certain local bifurcation results for the mean curvature problem. Equation presented. This is achieved by applying standard local bifurcation theory. The use of certain equivalent weighted and homogeneous Sobolev spaces was proved to be crucial. |
en |
heal.publisher |
KLUWER ACADEMIC PUBL |
en |
heal.journalName |
Geometriae Dedicata |
en |
dc.identifier.doi |
10.1023/A:1016286628128 |
en |
dc.identifier.isi |
ISI:000176786600006 |
en |
dc.identifier.volume |
91 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
71 |
en |
dc.identifier.epage |
84 |
en |