dc.contributor.author |
Tzanetis, DE |
en |
dc.date.accessioned |
2014-03-01T01:17:35Z |
|
dc.date.available |
2014-03-01T01:17:35Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
10726691 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14575 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-52449120724&partnerID=40&md5=893a6669f4f3354b8568f549dca32646 |
en |
dc.relation.uri |
http://www.ma.hw.ac.uk/EJDE/Volumes/2002/11/tzanetis.pdf |
en |
dc.relation.uri |
http://www.emis.math.ca/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf |
en |
dc.relation.uri |
http://mathnet.preprints.org/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf |
en |
dc.relation.uri |
http://www.univie.ac.at/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf |
en |
dc.relation.uri |
http://ejde.math.txstate.edu/Volumes/2002/11/tzanetis.pdf |
en |
dc.relation.uri |
http://ejde.math.unt.edu/Volumes/2002/11/tzanetis.pdf |
en |
dc.relation.uri |
http://www.math.ethz.ch/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf |
en |
dc.relation.uri |
http://ftp.zcu.cz/pub/doc/EJDE/Volumes/2002/11/tzanetis.pdf |
en |
dc.relation.uri |
http://www.emis.de/journals/EJDE/2002/11/tzanetis.pdf |
en |
dc.relation.uri |
http://www-sbras.nsc.ru/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf |
en |
dc.relation.uri |
http://www.math.ethz.ch/EMIS/journals/EJDE/Monographs/Monographs/Volumes/2002/11/tzanetis.pdf |
en |
dc.relation.uri |
http://www.maths.tcd.ie/EMIS/journals/EJDE/Volumes/Volumes/2002/11/tzanetis.pdf |
en |
dc.relation.uri |
http://www.mat.ub.es/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf |
en |
dc.relation.uri |
http://emis.luc.ac.be/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf |
en |
dc.relation.uri |
http://www.maths.soton.ac.uk/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf |
en |
dc.subject |
Blow-up |
en |
dc.subject |
Global existence |
en |
dc.subject |
Nonlocal parabolic equations |
en |
dc.subject |
Steady states |
en |
dc.title |
Blow-up of radially symmetric solutions of a non-local problem modelling Ohmic heating |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We consider a non-local initial boundary-value problem for the equation (Figure Presented) where u represents a temperature and / is a positive and decreasing function. It is shown that for the radially symmetric case, if f0∞ f(s) ds < ∝ then there exists a critical value λ* > 0 such that for λ > λ* there is no stationary solution and u blows up, whereas for λ < λ* there exists at least one stationary solution. Moreover, for the Dirichlet problem with - sf′(s) < f(s) there exists a unique stationary solution which is asymptotically stable. For the Robin problem, if λ < λ* then there are at least two solutions, while if λ = λ* at least one solution. Stability and blow-up of these solutions are examined in this article. © 2002 Southwest Texas State University. |
en |
heal.journalName |
Electronic Journal of Differential Equations |
en |
dc.identifier.volume |
2002 |
en |
dc.identifier.spage |
XXV |
en |
dc.identifier.epage |
XXVI |
en |