HEAL DSpace

Blow-up of radially symmetric solutions of a non-local problem modelling Ohmic heating

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzanetis, DE en
dc.date.accessioned 2014-03-01T01:17:35Z
dc.date.available 2014-03-01T01:17:35Z
dc.date.issued 2002 en
dc.identifier.issn 10726691 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14575
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-52449120724&partnerID=40&md5=893a6669f4f3354b8568f549dca32646 en
dc.relation.uri http://www.ma.hw.ac.uk/EJDE/Volumes/2002/11/tzanetis.pdf en
dc.relation.uri http://www.emis.math.ca/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf en
dc.relation.uri http://mathnet.preprints.org/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf en
dc.relation.uri http://www.univie.ac.at/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf en
dc.relation.uri http://ejde.math.txstate.edu/Volumes/2002/11/tzanetis.pdf en
dc.relation.uri http://ejde.math.unt.edu/Volumes/2002/11/tzanetis.pdf en
dc.relation.uri http://www.math.ethz.ch/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf en
dc.relation.uri http://ftp.zcu.cz/pub/doc/EJDE/Volumes/2002/11/tzanetis.pdf en
dc.relation.uri http://www.emis.de/journals/EJDE/2002/11/tzanetis.pdf en
dc.relation.uri http://www-sbras.nsc.ru/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf en
dc.relation.uri http://www.math.ethz.ch/EMIS/journals/EJDE/Monographs/Monographs/Volumes/2002/11/tzanetis.pdf en
dc.relation.uri http://www.maths.tcd.ie/EMIS/journals/EJDE/Volumes/Volumes/2002/11/tzanetis.pdf en
dc.relation.uri http://www.mat.ub.es/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf en
dc.relation.uri http://emis.luc.ac.be/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf en
dc.relation.uri http://www.maths.soton.ac.uk/EMIS/journals/EJDE/Volumes/2002/11/tzanetis.pdf en
dc.subject Blow-up en
dc.subject Global existence en
dc.subject Nonlocal parabolic equations en
dc.subject Steady states en
dc.title Blow-up of radially symmetric solutions of a non-local problem modelling Ohmic heating en
heal.type journalArticle en
heal.publicationDate 2002 en
heal.abstract We consider a non-local initial boundary-value problem for the equation (Figure Presented) where u represents a temperature and / is a positive and decreasing function. It is shown that for the radially symmetric case, if f0∞ f(s) ds < ∝ then there exists a critical value λ* > 0 such that for λ > λ* there is no stationary solution and u blows up, whereas for λ < λ* there exists at least one stationary solution. Moreover, for the Dirichlet problem with - sf′(s) < f(s) there exists a unique stationary solution which is asymptotically stable. For the Robin problem, if λ < λ* then there are at least two solutions, while if λ = λ* at least one solution. Stability and blow-up of these solutions are examined in this article. © 2002 Southwest Texas State University. en
heal.journalName Electronic Journal of Differential Equations en
dc.identifier.volume 2002 en
dc.identifier.spage XXV en
dc.identifier.epage XXVI en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής