HEAL DSpace

Complex dynamics of perfect discrete systems under partial follower forces

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sophianopoulos, DS en
dc.contributor.author Kounadis, AN en
dc.contributor.author Vakakis, AF en
dc.date.accessioned 2014-03-01T01:17:39Z
dc.date.available 2014-03-01T01:17:39Z
dc.date.issued 2002 en
dc.identifier.issn 0020-7462 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14600
dc.subject Boundary Value Problem en
dc.subject Complex Dynamics en
dc.subject Discrete System en
dc.subject Equilibrium Point en
dc.subject Initial Condition en
dc.subject Linear Algebra en
dc.subject Numerical Simulation en
dc.subject Periodic Orbit en
dc.subject 4 dimensional en
dc.subject.classification Mechanics en
dc.subject.other Boundary value problems en
dc.subject.other Chaos theory en
dc.subject.other Computer simulation en
dc.subject.other Dynamics en
dc.subject.other Nonlinear equations en
dc.subject.other Problem solving en
dc.subject.other Discrete systems en
dc.subject.other Nonlinear systems en
dc.title Complex dynamics of perfect discrete systems under partial follower forces en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0020-7462(01)00144-5 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0020-7462(01)00144-5 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract Equilibrium points, primary and secondary static bifurcation branches, and periodic orbits with their bifurcations of discrete systems under partial follower forces and no initial imperfections are examined. Equilibrium points are computed by solving sets of simultaneous, non-linear algebraic equations, whilst periodic orbits are determined numerically by solving 2- or 4-dimensional non-linear boundary value problems. A specific application is given with Ziegler's 2-DOF cantilever model. Numerous, complicated static bifurcation paths are computed as well as complicated series of periodic orbit bifurcations of relatively large periods. Numerical simulations indicate that chaotic-like transient motions of the system may appear when a forcing parameter increases above the divergence state. At these forcing parameter values, there co-exist numerous branches of bifurcating periodic orbits of the system; it is conjectured that sensitive dependence on initial conditions due to the large number of co-existing periodic orbits causes the chaotic-like transients observed in the numerical simulations. (C) 2002 Elsevier Science Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Non-Linear Mechanics en
dc.identifier.doi 10.1016/S0020-7462(01)00144-5 en
dc.identifier.isi ISI:000175701800003 en
dc.identifier.volume 37 en
dc.identifier.issue 7 en
dc.identifier.spage 1121 en
dc.identifier.epage 1138 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής