dc.contributor.author |
Sophianopoulos, DS |
en |
dc.contributor.author |
Kounadis, AN |
en |
dc.contributor.author |
Vakakis, AF |
en |
dc.date.accessioned |
2014-03-01T01:17:39Z |
|
dc.date.available |
2014-03-01T01:17:39Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0020-7462 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14600 |
|
dc.subject |
Boundary Value Problem |
en |
dc.subject |
Complex Dynamics |
en |
dc.subject |
Discrete System |
en |
dc.subject |
Equilibrium Point |
en |
dc.subject |
Initial Condition |
en |
dc.subject |
Linear Algebra |
en |
dc.subject |
Numerical Simulation |
en |
dc.subject |
Periodic Orbit |
en |
dc.subject |
4 dimensional |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Chaos theory |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Discrete systems |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.title |
Complex dynamics of perfect discrete systems under partial follower forces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0020-7462(01)00144-5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0020-7462(01)00144-5 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Equilibrium points, primary and secondary static bifurcation branches, and periodic orbits with their bifurcations of discrete systems under partial follower forces and no initial imperfections are examined. Equilibrium points are computed by solving sets of simultaneous, non-linear algebraic equations, whilst periodic orbits are determined numerically by solving 2- or 4-dimensional non-linear boundary value problems. A specific application is given with Ziegler's 2-DOF cantilever model. Numerous, complicated static bifurcation paths are computed as well as complicated series of periodic orbit bifurcations of relatively large periods. Numerical simulations indicate that chaotic-like transient motions of the system may appear when a forcing parameter increases above the divergence state. At these forcing parameter values, there co-exist numerous branches of bifurcating periodic orbits of the system; it is conjectured that sensitive dependence on initial conditions due to the large number of co-existing periodic orbits causes the chaotic-like transients observed in the numerical simulations. (C) 2002 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Non-Linear Mechanics |
en |
dc.identifier.doi |
10.1016/S0020-7462(01)00144-5 |
en |
dc.identifier.isi |
ISI:000175701800003 |
en |
dc.identifier.volume |
37 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
1121 |
en |
dc.identifier.epage |
1138 |
en |