dc.contributor.author |
Efremidis, N |
en |
dc.contributor.author |
Hizanidis, K |
en |
dc.date.accessioned |
2014-03-01T01:17:39Z |
|
dc.date.available |
2014-03-01T01:17:39Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0740-3224 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14601 |
|
dc.subject |
Direct Numerical Simulation |
en |
dc.subject |
Erbium Doped Fiber Amplifier |
en |
dc.subject |
ginzburg-landau equation |
en |
dc.subject |
Linear Stability Analysis |
en |
dc.subject |
Optical Fiber |
en |
dc.subject |
Shock Wave |
en |
dc.subject.classification |
Optics |
en |
dc.subject.other |
Asymptotic stability |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Doping (additives) |
en |
dc.subject.other |
Fiber optics |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Shock waves |
en |
dc.subject.other |
Solitons |
en |
dc.subject.other |
Continuous wave (CW) operations |
en |
dc.subject.other |
Fiber lasers |
en |
dc.title |
Complex-cubic Ginzburg-Landau equation-based model for erbium-doped fiber-amplifier-supported nonreturn-to-zero communications |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1364/JOSAB.19.000063 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1364/JOSAB.19.000063 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
The propagation of nonreturn-to-zero pulses, composed by a superposition of two exact shock-wave solutions of a complex-cubic Ginzburg-Landau equation linearly coupled to a linear nondispersive equation, is studied in detail. The model describes the distributed (average) propagation in a dual-core erbium-doped fiber-amplifier-supported optical-fiber system where stabilization is achieved by means of short segments of an extra lossy core that is parallel and coupled to the main one. The linear-stability analysis of the two asymptotic states of the shock wave in combination with direct numerical simulations provide necessary conditions for optimal propagation of the nonreturn-to-zero pulse. The enhancement of the propagation distance by at least an order of magnitude, under a suitable choice of the parameters, establishes the beneficial role of the passive channel. (C) 2002 Optical Society of America. |
en |
heal.publisher |
OPTICAL SOC AMER |
en |
heal.journalName |
Journal of the Optical Society of America B: Optical Physics |
en |
dc.identifier.doi |
10.1364/JOSAB.19.000063 |
en |
dc.identifier.isi |
ISI:000173257100009 |
en |
dc.identifier.volume |
19 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
63 |
en |
dc.identifier.epage |
74 |
en |