HEAL DSpace

Development of an optimised, standard-compliant procedure to calculate sound transmission loss: Design of transmission rooms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadopoulos, CI en
dc.date.accessioned 2014-03-01T01:17:42Z
dc.date.available 2014-03-01T01:17:42Z
dc.date.issued 2002 en
dc.identifier.issn 0003682X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14630
dc.subject Finite Element en
dc.subject First Principle en
dc.subject Numerical Simulation en
dc.subject Quality Criteria en
dc.subject Standardisation en
dc.subject Steady State en
dc.subject Virtual Laboratory en
dc.subject Low Frequency en
dc.subject Reverberation Time en
dc.subject Sound Transmission Loss en
dc.subject Transmission Loss en
dc.subject.other Acoustic variables measurement en
dc.subject.other Acoustics laboratories en
dc.subject.other Computer simulation en
dc.subject.other Finite element method en
dc.subject.other Optimization en
dc.subject.other Reverberation en
dc.subject.other Sound insulating materials en
dc.subject.other Sound transmission loss en
dc.subject.other Acoustic wave transmission en
dc.title Development of an optimised, standard-compliant procedure to calculate sound transmission loss: Design of transmission rooms en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0003-682X(02)00005-1 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0003-682X(02)00005-1 en
heal.publicationDate 2002 en
heal.abstract A numerical procedure to estimate the transmission loss of sound insulating structures is proposed based upon the technology of acoustic measurements and standards. A virtual laboratory (VL), namely, a numerical representation of a real laboratory consisting of two reverberation rooms meeting certain sound field quality criteria is designed. VL is to be used for the numerical simulation of standardised measurements under predefined, controlled, acoustic conditions. In this paper, the design and optimisation of VL is investigated. The geometry of the transmission rooms is designed following first principles, in order for diffuse field conditions and sufficiently smooth primary mode distribution in the low frequency to be achieved. A finite element-based optimisation procedure, introduced by the author in previous work, is extended to arbitrarily shaped rooms. It is used to predict the appropriate local geometric modifications so as for improved mode distribution and smoother sound pressure fluctuations of the transmission rooms in the low-frequency range to be achieved and low-frequency measurement reproducibility and accuracy to be increased. Steady-state acoustic response analysis is performed in order to quantify the acoustic field quality of the virtual transmission rooms in the frequency range of measurements. A method to calculate the total absorption, A, of the receiving room is introduced by simulation of the reverberation time measurement procedure using Transient acoustic response analysis. The acoustic performance of VL is overall considered and is shown to meet in a sufficient degree, relative laboratory measurement standards in the frequency range of 100÷704 Hz. © 2002 Elsevier Science Ltd. All rights reserved. en
heal.journalName Applied Acoustics en
dc.identifier.doi 10.1016/S0003-682X(02)00005-1 en
dc.identifier.volume 63 en
dc.identifier.issue 9 en
dc.identifier.spage 1003 en
dc.identifier.epage 1029 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής