dc.contributor.author |
Katsikadelis, JT |
en |
dc.date.accessioned |
2014-03-01T01:17:44Z |
|
dc.date.available |
2014-03-01T01:17:44Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0178-7675 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14642 |
|
dc.subject |
Analog equation |
en |
dc.subject |
Boundary elements |
en |
dc.subject |
Dynamic analysis |
en |
dc.subject |
Elasticity |
en |
dc.subject |
Membrane |
en |
dc.subject |
Nonlinear |
en |
dc.subject |
Vibrations |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Membranes |
en |
dc.subject.other |
Partial differential equations |
en |
dc.subject.other |
Physical properties |
en |
dc.subject.other |
Analog equation method |
en |
dc.subject.other |
Dynamic analysis |
en |
dc.subject.other |
Elasticity |
en |
dc.title |
Dynamic analysis of nonlinear membranes by the analog equation method: A boundary-only solution |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00466-002-0330-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00466-002-0330-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
A boundary-only solution is presented for dynamic analysis of elastic membranes under large deflections. The solution procedure is based on the analog equation method (AEM). According to this method, the three coupled nonlinear second order hyperbolic partial differential equations in terms of displacements, which govern the response of the membrane, are replaced with three Poisson's quasi-static equations under fictitious time dependent sources. The fictitious sources are established using a BEM-based procedure and the displacements as well as the stress resultants at any point are evaluated from their integrals representations. Numerical examples are presented which illustrate the method. |
en |
heal.publisher |
SPRINGER-VERLAG |
en |
heal.journalName |
Computational Mechanics |
en |
dc.identifier.doi |
10.1007/s00466-002-0330-2 |
en |
dc.identifier.isi |
ISI:000177705300009 |
en |
dc.identifier.volume |
29 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
170 |
en |
dc.identifier.epage |
177 |
en |