dc.contributor.author |
Karlaftis, MG |
en |
dc.contributor.author |
Golias, I |
en |
dc.date.accessioned |
2014-03-01T01:17:46Z |
|
dc.date.available |
2014-03-01T01:17:46Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0001-4575 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14661 |
|
dc.subject |
Accident rates |
en |
dc.subject |
Hierarchical tree based regression |
en |
dc.subject |
Rural roads |
en |
dc.subject.classification |
Ergonomics |
en |
dc.subject.classification |
Public, Environmental & Occupational Health |
en |
dc.subject.classification |
Social Sciences, Interdisciplinary |
en |
dc.subject.classification |
Transportation |
en |
dc.subject.other |
article |
en |
dc.subject.other |
environmental planning |
en |
dc.subject.other |
human |
en |
dc.subject.other |
nonparametric test |
en |
dc.subject.other |
regression analysis |
en |
dc.subject.other |
statistics |
en |
dc.subject.other |
traffic accident |
en |
dc.subject.other |
United States |
en |
dc.subject.other |
Accidents, Traffic |
en |
dc.subject.other |
Environment Design |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Indiana |
en |
dc.subject.other |
Regression Analysis |
en |
dc.subject.other |
Statistics, Nonparametric |
en |
dc.title |
Effects of road geometry and traffic volumes on rural roadway accident rates |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0001-4575(01)00033-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0001-4575(01)00033-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
This paper revisits the question of the relationship between rural road geometric characteristics, accident rates and their prediction, using a rigorous non-parametric statistical methodology known as hierarchical tree-based regression. The goal of this paper is twofold. first, it develops a methodology that quantitatively assesses the effects of various highway geometric characteristics on accident rates and, second, it provides a straightforward, yet fundamentally and mathematically sound way of predicting accident rates on rural roads. The results show that although the importance of isolated variables differs between two-lane and multilane roads, 'geometric design' variables and 'pavement condition' variables are the two most important factors affecting accident rates. Further, the methodology used in this paper allows for the explicit prediction of accident rates for given highway sections, as soon as the profile of a road section is given. (C) 2002 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Accident Analysis and Prevention |
en |
dc.identifier.doi |
10.1016/S0001-4575(01)00033-1 |
en |
dc.identifier.isi |
ISI:000174640400012 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
357 |
en |
dc.identifier.epage |
365 |
en |